

Digital Twin Components for Geophysical Extreme Phenomena

The example of Volcanic Hazards within the DT-GEO project

Stefano Cacciaguerra (1), Antonio Costa(1), Francesca Quareni (1), Paolo Papale(1), Flavio Cannavò (1), Arnau Folch (2), Giovanni Macedonio (1), Sara Barsotti (3)

INGV, Istituto Nazionale di Geofisica e Vulcanologia, Italy
 CSIC, Geociencias Barcelona, Spain
 IMO, Icelandic Meteorological Office, Iceland

SAPERI INTERCONNESSI

Cacciaguerra et al. – INGV, CSIC, IMO

DT-GEO in a nutshell

DT-GEO Consortium Composition

26 From 10 different countries

8

3

Beneficiary Partners

CSIC, INGV, IGF, CIN, BSC, NGI, UMA, GFZ, LMU, IMO, UHAM, LIP, CNRS, EPOS, ACK

Affiliated Entities

UPV (affiliated to CSIC) UNISTRA, UGA, IRD, OCA, UCA, IPGP, UP (all affiliated to CNRS)

Associated Partners

2 from Switzerland (ETH and MON) 1 from U.K. (UKRI)

> ConfGARR23 APERI INTERCONNESSI

Data Architecture, Workflows and RI

A Digital Twin on geophysical extremes to be integrated in the **Destination Earth initiative** provided that:

- datasets, data products, web-services considere a qualitybased ecosystem for data and metadata;
- data and workflows architecture enable the deployment and execution of data-driven workflows in HPC and cloud environments;
- seamless access is provided to the EuroHPC RI, with the containerization of DTCs, from quality-based repositories of software and containers;
- a flexible ecosystem ensures an EOSC-enabled data quality management through an automatic FAIR validation and interoperability among the DTCs.

FALL3D (HPC: yes, GPU-enabled) ChEESE CoE flagship code for modelling of atmospheric dispersal of particles, aerosols and radionuclides. etc... **PyCOMPSs** (HPC: yes) workflow framework to ease the development and execution of parallel applications for distributed infrastructures, such as Clusters, Clouds workflow and containerized platforms. udocker (HPC: yes, GPU-enabled) workflow for the execution of Linux containers in user space without requiring root privileges in HPC clusters, interactive clusters, grid infrastructures and cloud resources. dislib (HPC: yes) machine learning library parallelized with PyCOMPSs dealing with large amounts of data distributed in HPC systems. **DSpace-CRIS** (HPC: no) system using DSpace with the (richer) **CERIF metadata** model for Current Research Information Systems data **FAIR evaluator** (HPC: no) programmatic implementation of the RDA requirements list to test the integrity of data in accordance with FAIR principles. **EPOS-ICS-C** (HPC: no) core software providing access to the **EPOS metadata catalog**

model

Volcanic Ash and Gases Diffusion in Atmosphere

Raikoke, Kuril Islands, 22 June 2019 plume of ash and volcanic gases https://earthobservatory.nasa.gov/images/145226/raikoke-erupts

after Aubry et al. 2021, J. Volcan.Geoph. Res., 417

Digital Twin Component for Volcanic Ash Diffusion in Atmosphere

ConfGARR23
9 SAPERI INTERCONNESSI

Case Study: Volcanic Ash Diffusion in Atmosphere

Work in progress

Further test through site demonstrators:

Fagradalsfjall (Iceland)

Grímsvötn (Iceland)

...ready to change on-the-fly if a new volcano erupts during the project!

ConfGARR23 SAPERI INTERCONNESSI