MONSTER

Managing an Operator's Network with Software Defined Networking and Segment Routing

Candidato

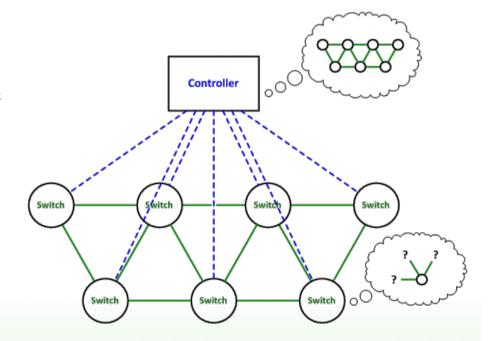
Ing. Luca Davoli

Tutor

Prof. Luca Veltri

6° Borsisti Day 24/03/2015 Roma – Consortium GARR

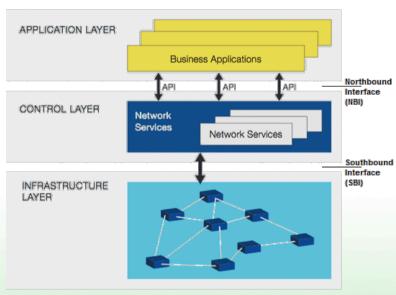
Overview


- Software Defined Networking (SDN)
- Traffic Engineering (TE)
- Segment Routing (SR)
- Proposed research activity

2

Software Defined Networking

- Key computing trends: changing traffic patterns, rise of Cloud services, Big data
- Current network constrained: complexity that leads to stasis, inability to scale, vendor dependence
- Virtualization
- Allows to decouple control layer, with traffic control function, from the underlying infrastructure layer, composed by network hardware
- Networks must be able to adapt in terms of security, scalability, and manageability
- Directly programmable, programmatically configured, centrally managed



Software Defined Networking (cont.)

- Better QoS, separating the control planes from the data plane, and abstracting the underlying hardware complexity
- Interaction with APIs at both Northbound and Southbound interfaces.
- Pure solution, with SDN protocol-enabled devices only
- Hybrid solution, combining SDN protocols IP, to maintain IP features, increasing devices functionalities

Software Defined Networking ≠ OpenFlow

Traffic Engineering

- Mechanisms to optimize the performance of data network by dynamically analyzing, predicting and regulating the behavior of transmitted data
- Traffic-oriented performance objectives rely on traffic streams QoS enhancement, packet loss and delay minimization, throughput and Service Level Agreements enforcement
- Resource-oriented performance objectives treat aspects related to resource utilization and network congestion management, investigating for overloaded and congested scenarios, while other feasible paths remain underutilized.
- Congestion resulting from inefficient resource allocation can be reduced by adopting load balancing policies, obtaining packet loss decreases, transit delay decreases, and aggregate throughput increases.

Flow Management

- · Switch Load-Balancing
- · Controller Load-Balancing
- Multiple Flow Tables

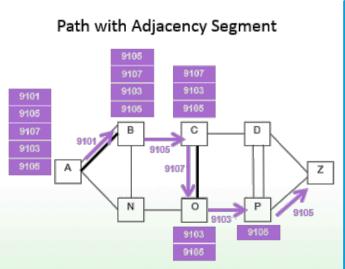
Fault Tolerance

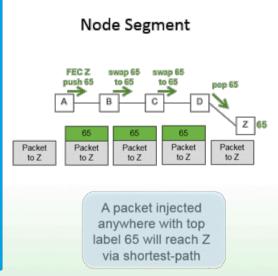
- · Fault Tolerance For Data Plane
- Fault Tolerance For Control Plane

Traffic Engineering

Topology Update

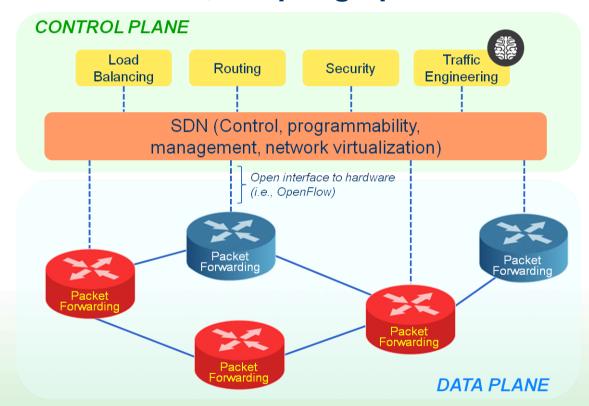
- New Policy Update
- Duplicate Table Entries in Switches
- Time-based Configuration


Traffic Analysis/Characterization


- · Monitoring Framework
- · Traffic Analysis
- · Checking Network Invariants
- · Debugging Programming Errors

Segment Routing

- Provides enhanced packet forwarding, acting as a LDP to support hop-by-hop Label Switched Paths
- Provides efficient use of network resources, strict performance guarantees and high scalability for application-based transactions
- Provides automatic traffic protection (Fast Re-Route) without any topological restrictions and additional signaling requirements, supporting an efficient centralized optimization capacity planning process (Shortest Path Flows)
- The state of the system goes from network to single packet
- Dispose of PUSH, POP and SWAP operations on Node and Adjacency segments
- Multi-Protocol Label Switching (MPLS): segments directly encoded as MPLS labels
- IPv6: segments as ordered list of IPv6 addresses in routing extension header

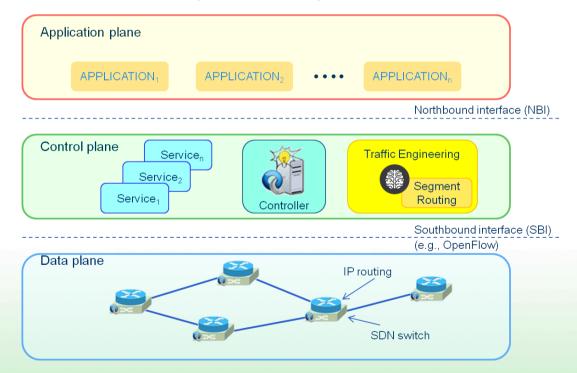


Proposed research activity

Use a Segment Routing-based approach to exploit SDN, providing Traffic Engineering and flow protection/restoration in wide area IP networks, adopting open-source solutions

Proposed research activity (cont.)

Data plane


- Hybrid IP/OpenFlow nodes, using MPLS-based Segment Routing, benefited from the availability of existing OpenFlow enabled devices that support MPLS
- Topology emulation using Mininet, capable of running multiple hosts (provider edge, customer edge, core SWs) on a single Linux kernel
- Switching capabilities evaluation, using different geographically distributed VMs, connected via Point-to-Point UDP-based tunnels
- OpenFlow-based software switch: OpenvSwitch, xDpd, lagopus

Proposed research activity (cont.)

Control plane

- Algorithms that combine and optimize classical Traffic Engineering path selection with a Segment Routing-based routing approach
- Runtime traffic measurement for optimizing those algorithms
- Controller platforms evaluation
 - OpenDayLight
 - RYU

