Very high throughput intra data centre communication networks based on orbital angular momentum modes in optical fibre

Annalaura Fasiello
Tutors: Paolo Martelli, Mario Martinelli

7° Borsisti Day

20/01/2016 Roma – Consortium GARR

Traffic Growth & Power consumption

Global Data Center IP Traffic Growth¹

Data centers consumed 1.1 to 1.5 % of global electricity in 2010 ²

76% of data centre traffic : within data centre

²Koomey, Jonathan. 2008. "Worldwide electricity used in data centers." Environmental Research Letters. vol. 3, no. 034008. September 23 ³Vision and Roadmap: Routing Telecom and Data Centers Toward Efficient Energy Use. Vision and Roadmap Workshop on Routing Telecom and Data Centers (2009).

¹CISCO global cloud index: forecast and methodology, 2012-2017," CISCO,

Capacity increase

Last decades exploitation:

- **□**WDM
- **PDM**
- □Complex modulation (QAM /PSK) formats with coherent systems

Actual technologies are approaching theoretical limit

Feasible way to increase capacity: Space-division Multiplexing (SDM)

Space-division Multiplexing

Bundles of fibers

Multicore fiber

Mode division multiplexing (MDM)

Mode Division Multiplexing

Modes can be labelled with **Orbital Angular Momentum** (OAM).

optical vortices

Generated from Gaussian beam by a Spiral Phase Plate (SPP)

Development of the OAM layer

- □OAM modes as transmission modes:
 - limited intermodal crosstalk in short optical links
 - enable increase of throughput
- □all-optical OAM-mode MUX/DEMUX and switching4
 - high speed
 - energy saving

OAM layer in short-distance links inside data centers: avoid MIMO processing, ACDs, ultra-fast DSP

All-optical node architectures: up to 75% energy savings in the data centres¹

¹Vision and Roadmap: Routing Telecom and Data Centers Toward Efficient Energy Use. Vision and Roadmap Workshop on Routing Telecom and Data Centers (2009).

Dove Prism Image rotation

A rotated Dove prism inverts and rotates of 2α any incident image

This image rotation in case of an OAM mode of order I is equivalent to a phase shift of $2\alpha I$. The dependence of this phase shift on both α and I permits to obtain an interferometric OAM mode sorter.

Dove Prism Mach-Zender interferometer

Our Proposal

We are studying other ways to obtain the same image rotation properties of a Dove Prism, more suitable for micro devices application.

Possibilities to explore:

- Cylindrical lenses
- Porro Prisms
- Other fibre properties

Results for the Cylindrical lenses configuration

without modal crosstalk

with modal crosstalk

Transmission of two OAM modes (of orders 0 and 1) carrying different 10-Gbit/s NRZ-OOK signals and direct detection after OAM mode demux

Plan of activity

- 1. Feasibility study of different solutions for OAM mux/demux
 - Studying different optical devices to realize modal multiplexing
- 2. Experimental implementation of OAM mux/demux

Evaluate transmission quality by meausurement of:

- Crosstalk
- Bit error rate
- Eye diagram

- 3. MDM impact on LAN and intra data centre networks
 - Energy saving
 - Cost impact
 - Compactness

GRAZIE PER L'ATTENZIONE