Multicast IPv6

Conferenza GARR_05 Pisa 10-13 maggio 2005

antonio.pinizzotto@iit.cnr.it lorenzo.rossi@iit.cnr.it marco.sommani@iit.cnr.it

Argomenti trattati

- Miglioramenti rispetto al multicast IPv4
 - nell'indirizzamento
 - nell'uso dei Rendez-vous Point
- Utilizzabilità del multicast IPv6 nella rete attuale

Per saperne di più

- 6net deliverables (http://www.6net.org/)
 - D3.1.2.v2: IPv6 cookbook for routing, DNS, intradomain multicast, inter-domain multicast, security
 - □ capitolo 9: Implementing IPv6 Multicast
 - D3.4.2 Inter-domain Multicast
 - D3.4.3 IPv6 multicast address allocation study
- Documenti IETF:
 - la bibliografia contenuta nei "6net deliverables" permette di orientarsi agevolmente fra RFC e internetdrafts

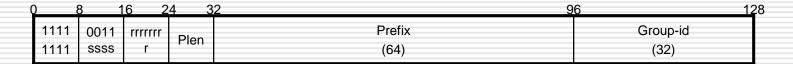
Formato indirizzo IPv6 multicast

- ffff: flag bits spiegati nel seguito
- sss: scope bits valori più comuni:

1	interface local (non esce dall'host)
2	link local (non attraversa nessun router)
5	site local (non oltrepassa i router di frontiera del sito)
8	organisation local (idem, per un'organizzazione)
Е	global (gruppo valido su tutta internet)

Commenti sugli scope-bits

lo stesso "group-id" acquista significati diversi a seconda dello scope.


FF02::101	tutti i server NTP sul mio link
FF05::101	tutti i server NTP del mio sito
FF08::101	tutti i server NTP della mia organizzazione
FF0E::101	tutti i server NTP di Internet

I multicast link-local (prefisso FFx2) sono utilizzati dai protocolli che lavorano a livello di link (autoconfigurazione, neighbour discovery, etc.)

Valori dei flag bits

rrrO	il group-id è assegnato da IANA. Per i bit rrr attualmente è ammesso solo il valore 0
0001	group-id scelto in maniera anarchica a proprio rischio e pericolo
0011	unicast prefix-based address. Una parte dei 112 bit successivi contiene un prefisso unicast, che identifica l'autorità assegnatrice
0111	embedded RP address. Semplificano il deployment del PIM-SM ASM.

Unicast prefix-based addresses

- Il compito di distribuire i group-id e di assicurarne l'univocità spetta all'assegnatario del prefisso "Prefix/Plen"
- Esempio:

FF3E:20:2001:760::gggg:gggg

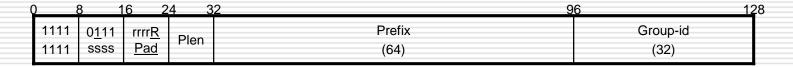
☐ Gruppi global-scope a disposizione del proprietario del prefisso 2001:760::/32

ASM e SSM

- Nel modello classico, detto Any Source Multicast (ASM)
 - l'ascoltatore dichiara il suo interesse a ricevere i pacchetti destinati ad un dato indirizzo multicast
 - la rete gli fa arrivare tutti i pacchetti destinati a tale indirizzo, qualunque ne sia la sorgente
- □ Con il Source Specific Multicast (SSM)
 - l'ascoltatore dichiara, oltre all'indirizzo multicast, anche la (le) sorgente(i) da cui intende ricevere pacchetti
 - adatto soprattutto a servizi unidirezionali (radio, tv...)

Considerazioni sul SSM

- □ IPv4 usa gli indirizzi 232.0.0.0/8
- □ IPv6 usa gli indirizzi "unicast prefix-based" con Plen=0: FF3s:0:0:0:0:0:gggg:gggg
- Per comunicare al "designated router" della LAN il suo interesse a una coppia (S,G), occorre IGMPv3 in IPv4 o MLDv2 in IPv6
- Problema: IGMPv3 e MLDv2 sono tuttora assenti sui principali sistemi operativi commerciali, ma disponibili sui router
- I test di SSM eseguiti in 6net sono descritti nel deliverable "D5.9: Report on testing application over PIM-SSM deployment"


II Rendez-vous Point

- Il protocollo PIM-SM stabilisce che un router, che scopra (tramite IGMP o MLD) l'esistenza di un ascoltatore, debba inviare un messaggio "join"
 - al router "upstream" in direzione della sorgente, se questa è nota
 - se la sorgente non è nota (caso che si verifica solo in ASM), il "join" deve essere inviato al router "upstream" in direzione di un router particolare detto "Rendez-vous Point" (RP)
- A sua volta, un router che riceve un "join" lo deve inviare "upstream" verso la sorgente o il RP

Individuazione del RP

- □ II PIM-SM presuppone che ogni router possegga gli elementi per determinare l'indirizzo del Rendez-vous Point associato a ciascun indirizzo multicast
- Ciò può avvenire
 - consultando una tabella costruita staticamente o dinamicamente (protocollo BSR), che associa a blocchi di indirizzi multicast indirizzi di RP
 - unico metodo disponibile in IPv4
 - eseguendo un algoritmo
 - metodo che presuppone l'utilizzo di indirizzi multicast IPv6 di tipo "embedded RP"

Embedded RP address

- □ II RP associato ad un indirizzo di tipo "Embedded RP" è Prefix::RPad
- Esempio: all'indirizzo multicast FF7E:540:2001:760:600:1:gggg:gggg e' associato il RP 2001:760:600:1::5
- I bit 65-124 dell'indirizzo del RP devono essere 0

Considerazioni finali

- Il deployment del multicast in IPv6 è più facile che in IPv4 grazie a:
 - scoped addresses
 - unicast prefix-based addresses
 - embedded RP addresses
- Principali freni alla diffusione:
 - molti router non interpretano l'embedded RP
 - □ un router di RENATER (2001:660:3007:300:1::) fa da RP globale per i prefissi FF0E::/16, FF1E::/16 e FF3E::/16
 - sistemi operativi privi di MLDv2 (impediscono SSM)
 - scarsità di applicazioni multicast IPv6 (ASM e SSM)
 - mancanza di switch L2 con "MLD snooping"