



### IMPLEMENTAZIONE DI UN SISTEMA DI PROTEZIONE GMPLS CONDIVISO PER RETI ETHERNET OTTICHE

Filippo Cugini, Luca Valcarenghi, Piero Castoldi, Pier Giorgio Raponi



#### Introduction



- Routed Optical Ethernet networks (i.e., 1 and 10 GbE point-to-point connection between IP/MPLS routers) represent an appealing network solution for MAN because of its low cost and simplicity.
- A limiting factor for the full deployment of the Optical Ethernet architecture in MAN is the <u>lack</u> of some OA&M features, such as **efficient fault detection** and **recovery**.

#### Here we present:

- an experimental evaluation of **two** main limitations that affect failure detection and recovery in current routed GbE networks.
- an implementation of cost-effective GMPLS shared protection in an IP over 10 GbE testbed.



### Failure Detection in GbE Point-to-Point network





- PXC is inserted to cause the failure (fiber cut)
- The Linux Box:
  - 1. Triggers the switching of the PXC thus determining the failure
  - 2. Detects the LOL through the control circuit
  - 3. Continuously receives from the Router the XML messages describing the stutus (*up/down*) of the GbE interface







• LOL-Status DOWN delay distribution experimented by the router:



Average delay: 0.573 s

Min value: 92 ms

Max value: 1.091 s.

Time [s]

- The operational state of GbE interfaces is checked by commercial routers just **once** a second
- → mean failure recovery time significantly **high** (despite of the recovery method e.g., MPLS Protection or Fast Reroute)







• Upon failure detection, each router removes\* from its OSPF routing tables the entries referring to the adjacent router and to the networks announced through it.

• Once the connection is physically recovered, it is necessary to wait until the

adjacency is re-established and the routing tables synchronized.

Interface Operative status UP

OSPF 2-way state

Ethernet interfaces are considered
Broadcast interfaces

→ time-consuming (~40s)
message exchange to elect the Designated
Router (DR) and the Backup DR (BDR).

DR and BDR election completed

First data packet after physical activation

|   | No. | Time(sec) | Source    | Destination | Protocol | Info         |
|---|-----|-----------|-----------|-------------|----------|--------------|
|   | 1   | 0.000000  | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
| _ | 2   | 0.575253  | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 5   | 1.580115  | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 7   | 9.140728  | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 8   | 10.465128 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 9   | 18.191481 | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 10  | 18.466769 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 11  | 27.642206 | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 12  | 27.947534 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 13  | 35.262820 | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 14  | 35.818328 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 15  | 39.043118 | 10.0.30.1 | 10.0.30.2   | OSPF     | DB Descr.    |
|   | 16  | 39.518474 | 10.0.30.2 | 10.0.30.1   | OSPF     | DB Descr.    |
|   | 17  | 39.653140 | 10.0.30.1 | 10.0.30.2   | OSPF     | DB Descr.    |
|   | 18  | 39.588430 | 10.0.30.2 | 10.0.30.1   | OSPF     | L3 Request   |
|   | 19  | 39.723254 | 10.0.30.1 | 10.0.30.2   | OSPF     | LS Update    |
|   | 20  | 39.723772 | 10.0.30.2 | 10.0.30.1   | OSPF     | DB Descr.    |
|   | 21  | 39.763110 | 10.0.30.1 | 10.0.30.2   | OSPF     | L3 Request   |
|   | 22  | 39.798439 | 10.0.30.2 | 10.0.30.1   | OSPF     | LS Update    |
|   | 23  | 39.798912 | 10.0.30.1 | 10.0.30.2   | OSPF     | DB Descr.    |
| _ | 24  | 40.013778 | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 25  | 40.588533 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 26  | 40.758537 | 10.0.30.2 | 224.0.0.5   | OSPF     | L3 Ack.      |
|   | 27  | 40.843313 | 10.0.30.1 | 224.0.0.5   | OSPF     | LS Ack.      |
|   | 28  | 41.593269 | 10.0.30.1 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 29  | 42.598732 | 10.0.30.2 | 224.0.0.5   | OSPF     | Hello Packet |
|   | 30  | 44.073577 | 10.0.30.1 | 224.0.0.5   | OSPF     | LS Update    |
|   | 31  | 44.408851 | 10.0.30.2 | 10.0.30.1   | OSPF     | L3 Request   |
|   | 32  | 44.443573 | 10.0.30.1 | 10.0.30.2   | OSPF     | LS Update    |
|   | 33  | 44.458853 | 10.0.30.2 | 224.0.0.5   | OSPF     | LS Update    |
| _ | 34  | 44.548855 | 10.0.30.2 | 224.0.0.5   | OSPF     | LS Update    |
| _ | 35  | 44.719433 | 10.0.82.3 | 10.0.80.3   | TCP      |              |
| • | 435 | 45.118942 | 10.0.30.2 | 224.0.0.5   | OSPF     | L3 Ack.      |
|   | 821 | 45.503613 | 10.0.30.1 | 224.0.0.5   | OSPF     | LS Ack.      |
|   |     |           |           |             |          |              |



### OSPF adjacency in *ATM* Point-to-Point network



- ATM interfaces can be declared as Point-to-Point interfaces
  - → no need to elect the Designated Router (DR) and the Backup DR (BDR).

| Interface Operative status UP |                |           |             |          |                |  |  |
|-------------------------------|----------------|-----------|-------------|----------|----------------|--|--|
| interface Operative status or | No. Time (sec) | Source    | Destination | Protocol | Packet Type    |  |  |
|                               | 1 0.000000     | 10.0.50.1 | 224.0.0.5   | OSPF     | Hello Packet   |  |  |
|                               | 2 1.300000     | 10.0.50.1 | 224.0.0.5   | OSPF     | DB Descr.      |  |  |
|                               | 3 1.383334     | 10.0.50.1 | 224.0.0.5   | OSPF     | DB Descr.      |  |  |
|                               | 4 1.433334     | 10.0.50.1 | 224.0.0.5   | OSPF     | L3 Request     |  |  |
|                               | 5 1.466667     | 10.0.50.1 | 224.0.0.5   | 03PF     | DB Descr.      |  |  |
|                               | 6 1.500000     | 10.0.50.1 | 224.0.0.5   | OSPF     | DB Descr.      |  |  |
|                               | 7 1.583334     | 10.0.50.1 | 224.0.0.5   | OSPF     | LS Update      |  |  |
| First data packet after       | 8 2.283334     | 10.0.50.1 | 224.0.0.5   | OSPF     | Hello Packet   |  |  |
| •                             | 9 2.483334     | 10.0.50.1 | 224.0.0.5   | OSPF     | L3 Acknowledge |  |  |
| physical activation           | 10 4.055557    | 10.0.50.1 | 224.0.0.5   | 03PF     | L3 Update      |  |  |
|                               | 11 4.166667    | 10.0.80.2 | 200.200.1.1 | TCP      |                |  |  |
| •                             |                | _         |             |          |                |  |  |

→ A simple router configuration statement (as available for ATM int.) could be introduced for GbE int. to avoid the default Broadcast procedure (No modifications are required to the OSPF protocol)





### GMPLS shared protection scheme

- GMPLS can be used to take advantage of all-optical Network Elements,
   e.g. transparent Photonic Cross-Connects (PXC).
- This makes possible the realization of shared protection scheme, using shared fibers as backup paths, thus avoiding:
  - the use of expensive electro-optical conversion devices
  - the duplication of GbE interfaces in IP/MPLS routers
  - the duplication of fibers
  - the previously described limitations that affect current IP/MPLS routers.
- We realized the distributed out-of-band control plane to control PXCs.
   At this purpose, some features of 2 protocols:
  - ✓ Link Management Protocol (LMP)
  - Reservation Protocol with GMPLS Extensions (**RSVP-GMPLS**) have been implemented on Linux Box (LB) using C code.









- Initially the primary fibers are used
- If a failure occurs the shared backup fibers are used



# Failure Detection mechanism based on Loss of Light (LoL)





- The received optical signal is <u>split</u> in two fibers
  - → part of the signal enters in the control circuit.
- When a failure occurs the output of the Control Circuit becomes LOW



## Failure Localization LMP message exchange





- The control circuit detects the Loss of Light (LoL).
- LB2 localizes the failure with its upstream LB1 by exchanging Link Management Protocol (LMP) messages.





### Recovery using pre-calculated route



- The upstream LB1 starts the recovery procedure using a pre-calculated path, sending a RSVP PATH message.
- After receiving the proper message each LB emits the switch command and propagates the RSVP RESV message



#### Performance



• The control protocols were implemented on Linux Box in C code

| No. | Time       | Source    | Destination | Protocol, | Info                        |
|-----|------------|-----------|-------------|-----------|-----------------------------|
| 1   | 0.000000   | 10,0,0,2  | 10,0,0,1    | LMP       | ChannelStatus Message.      |
| 2   | . 0.000338 | 10.0.0.1. | 10.0.0.2    | LMP       | ChannelStatusAck.Message.   |
| 3   | 0.000465   | 10.0.0.1  | 10.0.0.2    | LMP       | ChannélStatus Message.      |
| 4   | 0.000597   | 10.0.0.1  | 10:0.0:3    | RSVP      | PATH Message, SESSION: IPv4 |
| 5   | 0.000793   | 10.0.0.3  | 10.0.0.4    | RSVP      | PATH Message, SESSION: IPv4 |
| 6   | 0,001107   | 10,0,0,4  | 10,0,0,2    | RSVP      | PATH Message, SESSION: IPv4 |

• The overall packet exchange takes less than 2 ms.





### Performance (2)



- An outage time of 5 ms has been observed
- The speed of this solution is limited almost only by the switching time of the switches, which is less than 5 ms





#### **Conclusions**

- This study has experimentally shown two significant limitations that affect routed GbE point-to-point connections between current commercial IP/MPLS routers. Limitations refers to:
  - the delay introduced by the router to detect the failure
  - the time-consuming procedure employed to re-established the routing adjacency upon the physical connectivity is restored.
- Moreover this study has shown that the utilization of <u>GMPLS</u> distributed control plane combined with low cost all-optical network elements allows the cost effective implementation of <u>fast shared protection schemes</u> which avoid the aforementioned limitations and the duplication of resources.
- A recovery time of less than 5 ms has been achieved.