
Heart attack Virtualization
An HA virtualization cluster based on Pacemaker, Corosync, Xen and DRBD

Davide Vaghetti davide.vaghetti@ing.unipi.it

Centro Servizi Informatici Facoltà di Ingegneria

The Challenge
The Computing Center of the Faculty of Engineer

7000 users
The Computing Center of the Faculty of Engineer (CSIFI) serves a large community
composed by students, professors, researchears, technicians and administrative
workers.

manages the network
The area of the Faculty of Engineer comphrehends six buildings, ten departments,
nine students room, one library. Each structure has its own subnet. Local networks
are managed by a local admin; network authentication, routing and the physical
network backbone are managed by CSIFI.

provides network services
The center provides all the main network services for the engineers community:
authentication, mail, dns, web, vpn, e-learning, video conferencing, etc.

The 2009 server farm

tens of services = tens of servers
Each service had its own server, and running twenty network services
meaned having to manage the same amount of servers.

obsolete hardware

Building a new server farm for the Computing Center of the Faculty of Engineer

Targets Virtualization platform requirements
hardware usage consolidation
Physical servers should host multiple virtual instances. Existing servers will
be converted to virtual instances.

decoupling servers deployment
Servers deployment should be decoupled from hardware set up and
operative system installation.

simplify servers management
It should be possibile to manage startup/shutdown/restart operations of
each server through a single choerent console. The same apply to
filesystem management and backup operations.

hardware access
virtual instances must have directly access hardware (PCIs, NICs, HDs, etc.)

flexibility
it must be possible to assign different resources to each virtual instance

performances
virtualized servers should reach near-metal performances

reliability
the virtualization platform should implement high availability technologies

management
the less resources to dedicate to management, the better

high available servers
In the event of an hardware failures, virtual instances will be relocated to a
different physical node. During the years, the computing facilities of the Center

--- mainly based on desktop platforms and recycled
hardware running FreeBSD and Debian
GNU/Linux --- grew old. Moreover, the
server hardware was all but uniform,
ranging from ancient Pentium III to Intel
Xeon.

The Solution
Materials
Hardware

Dual Quadcore Xeon - 16 Gbyte RAM
4 x 146 Gbyte SAS 15K rpm HDs

Software

Xen 3.2.1

Corosync 1.2.1 (cluster engine)

Pacemaker 1.0.9 (cluster resource manager)

DRBD 8.3.7

LVM 2

Linux Kernel 2.6.26-2-xen-amd64

Cluster Network Layout

vnode1 vnode2 vnode3

network
vlan

drbd
vlan

iscsi
vlan

vstor1

eth0 eth0 eth0eth1 eth1 eth1eth2/eth3

eth0

eth2/eth3

eth1/eth2

eth2/eth3

eth2/eth3

Cluster Storage

vnode1

Dual Quadcore Xeon - 16 Gbyte RAM
4 x 146 Gbyte SAS 15K rpm HDs

vnode2

1 x Quadcore Xeon - 8 Gbyte RAM
2 x 320 Gbyte SATA 7.2K rpm HDs

vnode3

1 x Dual Dualcore Opteron - 4 Gbyte RAM
2 x 2 Tbyte SATA 7.2K rpm HDs
4 x 500 Gbyte SATA 7.2K rpm HDs

vstor1

Debian GNU/Linux Lenny

We setted up three vlans for the cluster.

- the network vlan: this is the server network, shared by all the virtual

instances ;

- the DRBD vlan: dedicated to DRBD synchronization;

- the iSCSI vlan: dedicated to iSCSI devices access;

vnode1 vnode2 vnode3

vstor1

292GB
Volume
Group 1

292GB
Volume
Group 2

292GB
Volume
Group 1

292GB
Volume
Group 2

292GB
Volume
Group 1

292GB
Volume
Group 2

2TB
RAID1

500GB
RAID1

500GB
RAID1

iscsi

DRBD

iscsi iscsi

DRBD

DRBD

DRBD

On each vnode we created two main LVM volume groups where to

put logical volume for virtual instances. On vnode2 we replicated

every logical volumes that belong to HA virtual instances.

The node vstor1 offers iSCSI targets that each node can subscribe to.

Cluster Logical Layout

vnode1 vnode2 vnode3

Corosync

Pacemaker

smtp server smtp server

mailbox server

dns1 serverdns1 server

web server web server

mailbox server

radius serverradius server

The cluster com-
munication layer is
provided by Coro-
sync (the red box).
On top of it, runs
Pacemaker (the
blue box), that is
the cluster con-
troller.
The cluster em-
braces the N+1
model: active vir-
tual instances
(green boxes) run
on vnode1 and
vnode3, ready-to-
deploy virtual ins-
tances are con-
figured on vnode2
(gray boxes).

Configurations

DRBD

common {
 syncer { rate 100M; }
}

VM sentinel
resource sentinel-root {
 protocol C;
 on vnode1 {
 device /dev/drbd1;
 disk /dev/vg2/sentinel-root;
 address 192.168.0.1:7789;
 meta-disk internal;
 }
 on vnode2 {
 device /dev/drbd1;
 disk /dev/vg2/sentinel-root;
 address 192.168.0.2:7789;
 meta-disk internal;
 }
}
[...]

Xen Corosync

kernel = '/boot/vmlinuz-2.6.26-2-xen-amd64'
ramdisk = '/boot/initrd.img-2.6.26-2-xen-amd64'
memory = '1024'
root = '/dev/xvda2 ro'
disk = [
 'drbd:sentinel-swap,xvda1,w',
 'drbd:sentinel-root,xvda2,w',
]
name = 'sentinel'
vif = ['mac=00:16:3E:61:01:03']
on_poweroff = 'destroy'
on_shutdown = 'destroy'
on_reboot = 'destroy'
on_crash = 'destroy'
extra = 'clocksource=jiffies'

[...]
 interface {
 ringnumber: 0
 bindnetaddr: 192.168.0.0
 mcastaddr: 239.255.1.1
 mcastport: 5405
 }

 interface {
 ringnumber: 1
 bindnetaddr: 131.114.28.0
 mcastaddr: 239.255.2.1
 mcastport: 5405
 }
[...]

$ crm configure show
node vnode1 \
 attributes standby="off"
node vnode2 \
 attributes standby="off"
node vnode3 \
 attributes standby="off"
[...]
primitive sentinel ocf:heartbeat:Xen \
 params xmfile="/etc/xen/ha/sentinel.cfg" shutdown_timeout="5" \
 op monitor interval="10s" \
 op start interval="0s" timeout="60" \
 op stop interval="0s" timeout="40s" \
 meta target-role="Started"
[...]
property $id="cib-bootstrap-options" \
 dc-version="1.0.9-74392a28b7f31d7ddc86689598bd23114f58978b" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="3" \
 stonith-enabled="false" \
 last-lrm-refresh="1285163787" \
 symmetric-cluster="false"
rsc_defaults $id="rsc-options" \
 resource-stickiness="INFINITY"

High available virtual instances uses drbd
devices.
Each drbd devices is composed of two logical
volumes located on different physical nodes.
Since we are free to decide where to locate
each logical volume, it is possible to use
logical volumes belonging to different volume
group to optimize disk utilization.

Virtual instances are plain old xen virtual machine. The
only relevant change made to the standard Xen
configuration is the disabling of Xendomain, since we want
to manage the start and stop of virtual instances with the
cluster controller.
Xen directly supports the use of drbd devices to attain high
availability. Xen is capable of set the drbd device to
primary on demand, and it also prevent split brain refusing
to start an instance if the drbd device is already primary on
another physical node.

Once you have configured the interface, or the
interfaces, on which Corosync will
communicate, the daemon works out of the
box.
In our case, we choosed to configure two
interfaces for redundancy.

Pacemaker provides a simple console --- the cluster resource manager, aka crm
--- for all the cluster operations: from configuration to resources start/stop
operations, from node management to resources relocation.
The cluster configuration is stored in XML, but you don't have to deal with it,
since every configuration directive is setted via the console, and presented as a
simple properties file.
Virtual instances are simple resources and this makes all the architecture
scalable and readable.

Pacemaker

The Benefits
The new serverfarm reached all the desired targets:

hardware usage consolidation: we have four main nodes running twenty virtualized instances;

decoupling server deployment: we can setup a new instances in minutes using predefined OS images;

simplified servers management: we can manage and monitor each server from one coherent console;

The new serverfarm...

The main benefit of this solution is that, even if every component is fully customizable, it is still standard:

- DRBD volumes are builded on custom logical volumes, but are fully manageable with dbrd tools;

- Xen virtual machine are plain old Xen instances, and are still managed by xen xools even after they are configured as cluster resources;

A custom solution with a standard soul

No lock-in and no constraints
Compared to other virtualization frameworks, or complete solutions like Ganeti, the cluster based on Corosync/Pacemaker puts little or

no constraints on resources definition and management. Moreover, since resources does not have to be modified to be manageable by

the cluster, you are miles away from lock-in scenarios.

Ubiquitous management for free
Pacemaker configuration and management console is powerful and simple, but best of all it does not even require a server, since each

node runs the cluster engine management daemon.

The Corosync/Pacemaker cluster requires some work by the system administrator to be setted up, and the standard cluster configuration is far from being ready for deployment. It is also true that it could require some time to be fully understood. But once you have a

good grasp of all the bits and pieces, you will appreciate the polished structure of your cluster.

It worth it

The Corosync Cluster Engine is an open source derivative work of the Service Availability Forum, and it is compliant with the APIs defined by the forum. Pacemaker, the cluster resource manager, is an open source project backed by RedHat and Novell, and it has a

strong legacy: the Heartbeat standard. That means that every piece of software that is compliant with those standards will work on your cluster, as for example the DRBD Management Console developed by LINBIT.

Open standards and why they matter

Conclusions

Cloud Computing Solutions are becoming more and more familiar in the
academia. The on demand delivery of computing resources paradigma
seem to really fit the needs of a community of users well separated from
the system administrators. It is not difficult to find scenarios where such
a computing model is helpful and valuable. The question is if it is also a
valid answer for all the centers that provide computing resources.

Cloud Computing: Thanks, But No Thanks

In data centers like our, the "demand" of computing resources is, or
should be, well-known since the beginning, and the final users of the
computing platforms --- as distinct from the users of the services
provided by that computing platform --- are also the computing
resources admins.

Is all the computing "on demand"?

Is Cloud Computing helpful even without the "on demand"?

Couldn't it be that Cloud Computing solutions are better computing
resources management platforms even if you don't really need the
"on demand" part? Well, at least the resources that should be
allocated to the cloud computing platform to manage the "on
demand" layer are wasted. Anyway, it could be that for big
organizations the overhead of the management resources is
relatively small. But in data centers like our, where it is not
uncommon to have just few physical nodes, those resources could
be better used.

What about constraints?

The smooth deployment model of Cloud Computing could have a
backside: virtual instances are usually heavely constrained in terms
of storage assignment, hardware access and network management.

Clustering basics

In a simmetric cluster each node can run every resource. On the contrary

on an asimmetric cluster, each resource should be configured to run on a

specific node.

Simmetry

Stickiness
Stickiness is a resource property that determine its tendency to run on a

specific node. It is extremely important to determine the behaviour of a

resource after a fail-over event: if it is 0 fail-back can occur, if it is

INFINITY, fail-back is inhibited.

STONITH
STONITH --- Shoot The Other Node

In The Head --- is a set of

mechanisms (fencing) used to

prevent split-brain situation.

Split-brain
When a cluster node mistakenly

believes that all the other node are

down and it attempt to start another

instance of a running resource, we

have a split-brain situation.

Fail-back

The capability to relocate resources on redundant system in the event of a

failure.

Fail-over

Once a failure is recovered, migrated resources can go back to the system

where they belong. Wherever automatic fail-over is the espected

behaviour of a cluster engine in case of failures, automatic fail-back is

often deemed dangerous.

