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Obiettivo
Uso di tecniche di Deep-Learning per la detection di 0-day attacks e
realizzazione di un network Intrusion Detection System anomaly-based

Motivazione
Gli attuali IDS sono inefficaci per attacchi
non noti

Sede
Dipartimento di Ingegneria dell’Università degli Studi del Sannio-DING
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Benign

Attack

Flow

• NIDS anomaly-based

• Basato sull’analisi di flussi

• Modello Autoencoder

• Problema trattato come task semi-supervised
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Strengths
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Architettura ‘snella’ Semi-supervised
learning

• Processo di learning
veloce

• Learning nell’ordine di 
minuti anche su computer 
desktop

State-of-the-art dataset 0-day discovery

Deep Autoencoder
autonomo

Estesa sperimentazione sul 
recente dataset CICIDS2017

Possibilità di scoprire attacchi 
non previsti nel training set
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Metodologia (1)
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Training e validazione 
con traffico Benigno

Low Reconstruction Error

High Reconstruction Error

ALERT!!!

…threshold RE setting
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Metodologia (2)
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Partizionamento del dataset
labelizzato

• Output delle fasi di training e 
validazione: AE capace di 
ricostruire traffico benigno con RE
basso.

• threshold dataset e testing
dataset non filtrati (traffico normale 
+ attacchi) con separazione delle 
label.

• scelta di una threshold ottima.
• unlabeled sample del threshold

dataset processati dall’AE
addestrato.

• RE associato all’informazione 
contenuta nella label del sample 
(traffico normale o attacco).

• processing dei sample presenti nel 
testing dataset.
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Metodologia (3)
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Anomaly Threshold setting
• Trade-off tra precision e recall: massimizzazione dell’F1 score
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Sperimentazione (1)
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Attacchi

Partizionamento del dataset

a% = 40% (normal) Training set
b% = 20% (normal) Validation set
c% = 20% (normal+attack) Threshold set
d% = 20% (normal+attack) Testing set

Ambiente
https://www.unb.ca/cic/datasets/ids-2017.html
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Sperimentazione (2)
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Tuning della rete 

Batch size = 200
Epoche = 100
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Risultati Sperimentali
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Metriche
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DoS
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zoomed plot

TestTableResult

martacatillo

June 2019

Detection Rate % 95.82
Accuracy % 95.73

False alarm rate % 4.32

1
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DDoS
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zoomed plot
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Brute Force
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zoomed plot
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Port Scan
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zoomed plot
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Bot
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zoomed plot

TestTableResult

martacatillo

June 2019

Detection Rate % 99.76
Accuracy % 91.58

False alarm rate % 8.89

1
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Web Attack
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zoomed plot

TestTableResult

martacatillo

June 2019

Detection Rate % 93.06
Accuracy % 96.08

False alarm rate % 3.88

1
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0-day discovery
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Obiettivo: riconoscere attacchi mai visti prima
Test sui DoS

0-day discovery (1)
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Discovery of DoS attacks by the ZED-IDS Anomaly Detector ARES ’19, August 26–29, 2019, Canterbury, UK

Traffic Number of instances
Dos Hulk 231073

DoS GoldenEye 10293
DoS SlowHTTPTest 5499

DoS Slowloris 5796
Heartbleed 11

Benign 440031
Table 1: DoS flow instances in the Wednesday dataset

are made up of packets that are legitimate in isolation, but whose
joint effect is the denial of a network service. It should be pointed
put that for CICFlowMeter the termination of TCP flows is upon
connection teardown (by a FIN packet). UDP flows, instead, are ter-
minated by a user-configurable flow timeout. This has implications
on the possibility to detect DoS attacks in real-time, as discussed
later.

In the CICIDS2017 dataset, the data capturing period starts at 9
a.m., Monday, July 3, 2017 and ends at 5 p.m., Friday, July 7, 2017,
for a total of 5 days. Monday is the “normal” day and includes only
benign traffic. In the morning and afternoon of Tuesday, Wednesday,
Thursday and Friday, in addition to normal traffic, were implemented
attacks belonging to the categories Brute Force FTP, Brute Force
SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS.
For our experiments, we selected the dataset recorded on Wednesday,
as this is the one that contains the DoS attacks. The DoS attacks
present in the dataset belong to the following five categories:

• Slowloris: tries to keep open many connections to the target
web server and holds them open as long as possible, sending
subsequent HTTP headers, but never completing the request.
Affected servers will eventually fill their maximum concur-
rent connection pool [27];

• Slowhttptest: similarly to the previous one, it operates at
application layer by sending partial HTTP requests, and pro-
longing them in several different ways. So the server keeps
too many resources busy waiting for the rest of the data [32];

• Hulk: generates a sequence of suitably crafted unique HTTP
requests, using various techniques to make the requests diffi-
cult to detect with signatures [12];

• Goldeneye: is another application layer attack; it uses KeepAlive
combined with NoCache to get many open connection/used
socket, putting a heavy pressure on the server and possibly
consuming all available sockets [29];

• Heartbleed: the attack is generally executed in Transport
Layer Security (TLS) protocol. It is typically exploited by
sending a specially-crafted “heartbeat” packet to an affected
server, requesting more data than would normally be re-
quested [26].

Table 1 shows the number of flow instances in the CICIDS2017
Wednesday dataset for each type of traffic.

4 EXPERIMENTS
In this section, we show the details about our experiments and the
results achieved. We present the metrics which have been used for
evaluation of the detection quality, and finally make a comparison

between the proposed semi-supervised approach and the most suc-
cessful supervised techniques.

4.1 Experimental Setup
The first step of our experiments deals with dataset preprocessing. As
mentioned before, the CICIDS2017 dataset contains records (flows)
identified by 85 features. For our experiments we considered only
83 attributes, since the Flow_ID and Timestamp features are not
relevant for the detection process. For each flow, the symbolic label
that identifies the type of traffic (Benign, DoS Hulk, DoS GoldenEye,
DoS Slowloris, DoS SlowHTTPTest, Heartbleed) was converted into
a numerical value. As our intention was to train the network to detect
DoS attack flows but not the particular type of attack, the labels
identifying attack flows were replaced by the numerical value 1,
while the label identifying flows of benign traffic were replaced by
the numerical value 0. We observed the presence of duplicate flow
instances in the dataset. In order to avoid possible imbalance due
to the identical records, all duplicates were removed. Finally, for
better AE training, we scaled all values of the dataset by using a
MaxAbsScaler.

Training, validation, threshold and test sets were obtained as
discussed in Sect. 3. With reference to Fig. 2, the values of a, b, c, d
are 40, 20, 20 and 20, respectively. In other words, the Training and
Validation datasets are made out of the normal samples contained
in the 40% and 20%, respectively, of the original dataset. Both the
Threshold and Test dataset are made out of 20% of the original
dataset and contain both normal and attack traffic. As mentioned
before, these four datasets are non-intersecting subsets of the original
dataset.

The performance of a deep learning model is heavily linked to
hyperparameters tuning. Their choice is therefore crucial and chal-
lenging. We implemented the ZED-IDS AE with Python, Keras
(Version 2.2.4) [8] and TensorFlow (Version 1.11.0) [1]. Keras is a
powerful Python library that runs on top of TensorFlow. It provides
highly modularized APIs for building and training deep learning
models.

A careful analysis of the effects of both the number of hidden
layers and the number of hidden neurons on the performance of
the ZED-IDS AE was conducted. The configuration that allowed
us to achieve the best performance was an all-connected structure,
including the following:

• Hidden Layer 1�100 neurons
• Hidden Layer 2�90 neurons
• Hidden Layer 3�10 neurons
• Hidden Layer 4�90 neurons
• Hidden Layer 5�100 neurons.

The resulting architecture is sketched in Fig. 4, where the number of
neurons drawn in the hidden layers has been reduced for graphical
reasons. It was also observed that our model achieves the best results
in terms of accuracy when batch size and epochs are 100 and 200,
respectively.

These configuration were used to process the four datasets as
explained in Sect. 3, obtaining in succession a trained AE, an optimal
anomaly threshold, and finally the performance figures for DoS
attack detection that are the object of the following subsection.

Hulk trattato come uno 0-day
• Training del modello senza Hulk
• Comparazione con classificatori supervised

Scenario 1 – Hulk known

• DoS Hulk
• DoS GoldenEye
• DoS Slowloris
• DoS SlowHTTPTest
• Heartbleed

• DoS Hulk
• DoS GoldenEye
• DoS Slowloris
• DoS SlowHTTPTest
• Heartbleed

Learning set Test set 
Scenario 2 – Hulk 0day

• DoS GoldenEye
• DoS Slowloris
• DoS SlowHTTPTest
• Heartbleed

• DoS Hulk
• DoS GoldenEye
• DoS Slowloris
• DoS SlowHTTPTest
• Heartbleed

Learning set Test set 
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Comparazione delle performance

Confronto con classificatori supervised

• Random Forest

• QDA

• Naive Bayes
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Matrici di confusione – Hulk-known
ARES ’19, August 26–29, 2019, Canterbury, UK

Figure 9: Confusion Matrix - Hulk-known - a) ZED-IDS AE, b)
Random Forest, c) QDA, d) Naive Bayes

Hulk-0day
Learning set: contains all benign records and attack records (DoS

GoldenEye, DoS Slowloris, DoS SlowHTTPTest, Heartbleed) except
Hulk.

Test set: contains both benign records and all attack records
(DoS Hulk, DoS GoldenEye, DoS Slowloris, DoS SlowHTTPTest,
Heartbleed).

The confusion matrices obtained for the ZED-IDS AE, Random
Forest, QDA and Naive Bayes are shown in Fig. 10. The performance
measurements for the four detectors are summarized in Table 3. The
obtained results show that supervised solutions, and in particular the
Random Forest algorithm, offer very good detection performance
in normal conditions, slightly better than the one of the ZED-IDS
AE. However, their performance drops when considering never-
seen-before attacks. In practice, in these conditions the supervised
algorithms are completely useless. On the other hand, in the second
scenario our AE performs almost as well as in normal conditions.
Its negligible performance loss (detection rate 93.61 vs. 95.82 in
Hulk-known) is due to the new setting of the anomaly threshold,
which is higher if the Hulk records are removed from the Threshold
dataset.

5 CONCLUSION
In this paper, we have presented the ZED-IDS AE, an anomaly
detector of DoS attacks based on a deep autoencoder and semi-
supervised learning. All our tests and experimentations were based
on the use of the CICIDS2017 dataset, which was preferred to other
datasets, widely used but obsolete. The proposed solution achieved
a detection accuracy of 95.73%, showing its ability to recognize
”never-seen-before” attacks. This makes it potentially useful for the
recognition of 0-day attacks.

Figure 10: Confusion matrix - Hulk-0day - a) ZED-IDS AE, b)
Random Forest, c) QDA, d) Naive Bayes

In our future work, we intend to test extensively the recognition
performance of the the ZED-IDS AE trained on the CICIDS2017 in
real-world conditions, e.g., to examine flows relative to non-synthetic
traffic collected on real networks. A second important point is to
prove the recognition capabilities of the AE under other types of
anomalous traffic flows (e.g., under non-DoS attacks).

However, the final objective of the ZED-IDS project is to develop
an integrated set of tools for 0-day real-time attack detection. As
mentioned in Section 3, the speed of flow processing by the AE is
not a problem for its real-time use, since it can be increased by GPU
acceleration, dedicated and/or parallel hardware. Processing flows
and not packets for attack detection could instead be a potential
issue. As mentioned before, TCP flows are closed on connection
teardown and UDP flows are terminated by a flow timeout. At least
in theory, this could delay the recognition of attacks. Anyway, we
think that this could be a reasonable price to pay for the possibility to
recognize unknown attacks, which is undoubtedly the main feature
of our proposal.
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Figure 9: Confusion Matrix - Hulk-known - a) ZED-IDS AE, b)
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The confusion matrices obtained for the ZED-IDS AE, Random
Forest, QDA and Naive Bayes are shown in Fig. 10. The performance
measurements for the four detectors are summarized in Table 3. The
obtained results show that supervised solutions, and in particular the
Random Forest algorithm, offer very good detection performance
in normal conditions, slightly better than the one of the ZED-IDS
AE. However, their performance drops when considering never-
seen-before attacks. In practice, in these conditions the supervised
algorithms are completely useless. On the other hand, in the second
scenario our AE performs almost as well as in normal conditions.
Its negligible performance loss (detection rate 93.61 vs. 95.82 in
Hulk-known) is due to the new setting of the anomaly threshold,
which is higher if the Hulk records are removed from the Threshold
dataset.

5 CONCLUSION
In this paper, we have presented the ZED-IDS AE, an anomaly
detector of DoS attacks based on a deep autoencoder and semi-
supervised learning. All our tests and experimentations were based
on the use of the CICIDS2017 dataset, which was preferred to other
datasets, widely used but obsolete. The proposed solution achieved
a detection accuracy of 95.73%, showing its ability to recognize
”never-seen-before” attacks. This makes it potentially useful for the
recognition of 0-day attacks.
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In our future work, we intend to test extensively the recognition
performance of the the ZED-IDS AE trained on the CICIDS2017 in
real-world conditions, e.g., to examine flows relative to non-synthetic
traffic collected on real networks. A second important point is to
prove the recognition capabilities of the AE under other types of
anomalous traffic flows (e.g., under non-DoS attacks).

However, the final objective of the ZED-IDS project is to develop
an integrated set of tools for 0-day real-time attack detection. As
mentioned in Section 3, the speed of flow processing by the AE is
not a problem for its real-time use, since it can be increased by GPU
acceleration, dedicated and/or parallel hardware. Processing flows
and not packets for attack detection could instead be a potential
issue. As mentioned before, TCP flows are closed on connection
teardown and UDP flows are terminated by a flow timeout. At least
in theory, this could delay the recognition of attacks. Anyway, we
think that this could be a reasonable price to pay for the possibility to
recognize unknown attacks, which is undoubtedly the main feature
of our proposal.
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Comparazione delle performance
metriche
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Network/algorithm
Detection rate % Accuracy % Precision % False alarm rate %

Hulk-known Hulk-0day Hulk-known Hulk-0day Hulk-known Hulk-0day Hulk-known Hulk-0day
Random Forest 99.93 10.00 99.94 67.23 99.91 99.90 0.05 0.01

QDA 98.90 18.26 98.59 68.82 97.29 82.79 1.58 2.18
Naive Bayes 99.01 68.65 58.59 81.92 46.79 78.99 64.59 10.47

ZED-IDS AE 95.82 93.61 95.73 94.93 92.72 92.56 4.32 4.32
Table 3: Performance Comparison
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• Accuratezza del 95.73% per lo scenario 2

• Modello potenzialmente utile per il riconoscimento di 0-day

• Tempi di training e di detection bassi

• Possibile integrazione in tool per la detection di attacchi real-time
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«Change is challenging. And security is like a moving target, 
so make sure you are able to deal with and work through
frequent changes.».

— Cindi Carter

Marta Catillo
martacatillo@gmail.com


