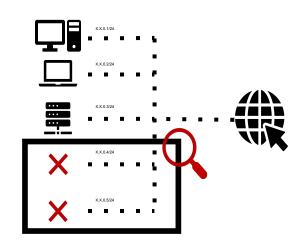


smartPOT - Analysis of Darknet Traffic Via Smart Honeypots

GIORNATA DI INCONTRO BORSE DI STUDIO GARR "ORIO CARLINI" ROMA

SmartData@PoliTO Politecnico di Torino

POLITECNICO DI TORINO



Background

Darknets: IP addresses advertised without hosting any service. **Passive sensors** that highlight several phenomena:

- Network scans, both malicious and legitimate
- Backscattering, i.e., traffic received from victims of attacks with IP spoofing
- Bugs & misconfigurations

Honeypots: intentionally vulnerable hosts used as decoy for attackers in order to record their malicious activities

Motivation and research questions

Increasing the darknet visibility with active responders

- 1. How much extra information do we get when responding to unsolicited darknet traffic?
- 2. Do the responses trigger changes on **probed ports and senders**?
- 3. Do the active services affect neighbouring darknet ports and addresses?
- 4. What if one answers to **services on non-standard ports**?

Our setup

L4 responder

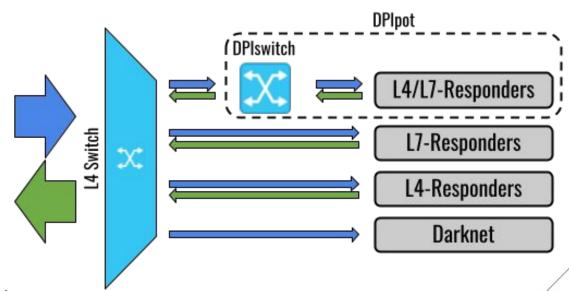
Negotiate TCP connection, and receive 1st client request

L7 responder

Vertical honeypots (T-Pot)

L4/L7 responder setups

Combinations of open ports (standard service ports)


DPIPot

nDPI to identify L7 protocol + honeypot backends

Darknets

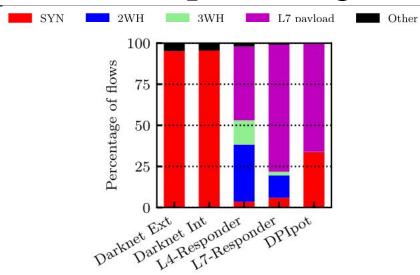
2 /24 Italy (Polito's IP range)

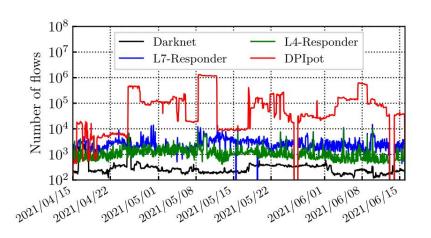
2 /24 Italy (GaRR's IP range)

GIORNATA DI INCONTRO BORSE DI STUDIO GARR "ORIO CARLINI" BORSISTI DAY 2022

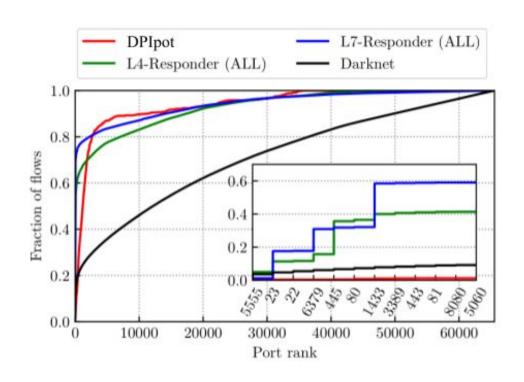
L4 & L7 Responders and DPIPot

Deployment	Service	Ports	Network size
DPIPot	All	0:65535	/29
L7-Responders	All	All below	/29
	Database	3306, 1433, 27017	/29
	Fileserver	135:139, 445	/29
	Mail	25, 110, 143, 465, 993, 995	/29
	Proxy	8080, 3128	/29
	Remote Desktop	3389, 5900, 5901, 6568	/29
	Terminal	22,23	/29
	Web	80, 443	/29
L4-Responders	All	0:65535	/29
	Database	3306, 33060, 1433, 4022, 1434, 5432, 27017	/29
	Fileserver	135:139, 445	/29
	Mail	25, 110, 143, 465, 993, 995	/29
	Proxy	8080, 8000, 3128	/29
	Remote Desktop	3389, 5900, 5901, 5800, 5801, 5938, 6568	/29
	Terminal	22, 2222, 23, 2323	/29
	Web	80, 443	/29
Darknet	None	0:65535	/24


Macroscopic traffic changes


- How much extra information do we get when responding to unsolicited darknet traffic?
- Do the responses trigger changes on probed ports and senders?

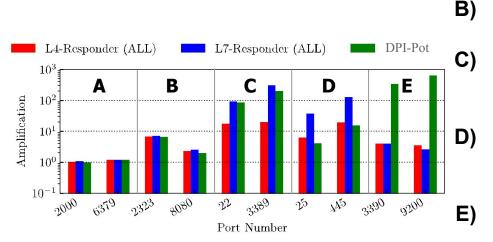
Macroscopic changes in traffic



- Darknet: almost only SYN messages
- 35% of the flows hitting the L4-Responder do not complete the handshake
- Responding at application level attracts lots of application layer traffic (expected)
- DPIPot attracts traffic not seen in L7-Responders
 70x increase in volume

Reponders change attackers' behavior?

Changes on probed ports



- Well-known ports receive around 20% of the total traffic hitting the darknet
- The top-ports account for the 60% of the flows on the L4-Responder
- The top-ports account for the 70% of the flows on the L7-Responder
- On DPI-Pot some hundreds
 of ports get most of the
 flows

Service amplification

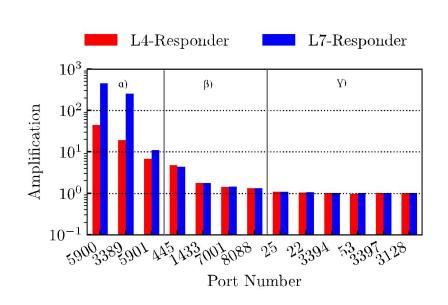
Amplification factor: ratio between the number of flows seen on the 8 IP addresses of a specific port(s), and the number of flows directed to the same port(s) on the 8 IP addresses belonging to the darknet.

A) Invariant (around 50 000 ports): only port scan attempts;

with client-initiated protocols;

Homogeneous (around 13 000 ports): senders find possible services on some open ports;

L7 client-initiated (around 500 ports): these are clear cases of open services on default ports


L7 server-initiated (around 10 ports): open services on default ports for which the senders expect the server to initiate the L7 exchange;

Large-scale attacks on non-standard ports (around 1500 ports): Senders discover particular services on non-standard ports and perform large attacks.

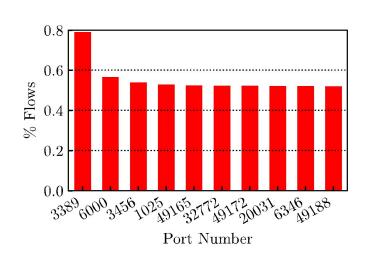
Service amplification

Service-specific deployments (Remote Desktop)

- α) Well-known (and open)ports for the category >increase in traffic expected
- β) **Side-Scan** ports that suddenly get targeted despite being blocked > increase in traffic **not** expected
- γ) Invariant ports > expected

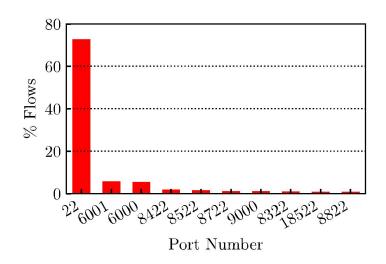
DPI-Pot

• What if one answers to services on non-standard ports?


What happens when we do DPI?

Top-5 protocols recognized in DPI-Pot

Protocol	Flows	Sender	Dest.	% of Flows on
Fiotocoi		Addr.	Ports	Standard Ports
RDP	329 652 678	1 415	28 333	0.8
HTTP	444 715	13 705	9 381	6.2
TLS	221 565	2806	11 999	4.6
SSH	119 698	1 097	187	72.9
MsSQL-TDS	31 596	3 193	448	92.6



What happens when we do DPI?

RDP protocol:

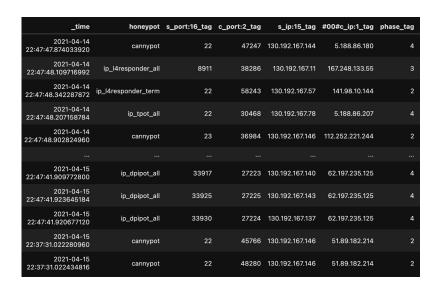
- Millions of flows on > 28k ports
- 0.8% on port 3389

SSH protocol:

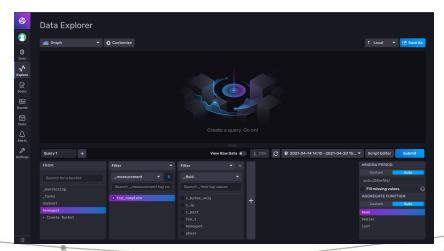
- Thousands of flows on 100s ports
- 72.9% on port 22 [note the *22*]

DPIPot attracts new types of scans/attacks that depend on the L7-protocol

Dashboard


How to automate the process?

- 1. **Raw Data Collection**: we collect raw data through our Honeypots and Darknets
- 2. **Data Extraction**: we use *Tstat* to process the data (we need Tstat to extract the concept of flow)
- 3. **Data Adaptation**: we transform the data to create a suitable database for InfluxDB
- 4. **Data Analysis and Visualization**: we use Grafana



GIORNATA DI INCONTRO BORSE DI STUDIO GARR "ORIO CARLINI" BORSISTI DAY 2022

InfluxDB

- Time series database
- Open Source
- Integration with other tools
- Still ongoing
- Horizontal Scalability with cost

Conclusions & Future Works

- Confirm some patterns, e.g., the increase by 10-100x in traffic when active services are deployed on the darknet
- Quantify events such as Side-Scans attracted by offering different services both on standard and non-standard ports
- Some services (e.g., RDP, SSH, ...) attract **aggressive** (brute-force) attacks
- InfluxDB is not the best time series database for our scenario
- Extend the set of responders to mimic behavior of many real system
 - Not just deploying a honeypot
 - Comprehensive simulation of system's behavior, firewalls etc.
- Evolve the responders to avoid detection
 - E.g., our deployment when searched in Shodan
 - Some IPs have been marked as honeypot, others not.

Thank you!

Questions?

