
Università degli Studi di Udine

Centro Servizi Informatici e Telematici

Claudio CASTELLANO Nicola SUSAN

Wireless Local Area Network d'Ateneo

Wireless per gli studenti

Dal Settembre 2003 l'Università degli Studi di Udine offre, a tutti gli studenti e ai docenti, la possibilità di collegarsi ad Internet via Wireless

Wireless per gli studenti

É sufficiente che:

gli utenti posseggano un notebook con scheda wireless con standard IEEE 802.11b/g integrata, PCMCIA o USB



Il sistema operativo supporti lo standard IEEE 802.1x già presente nelle piattaforme con Windows XP (SP1 o 2) o Apple Mac OSX

Wireless per gli studenti

Con le stesse username e password utilizzate nei laboratori didattici è possibile effettuare un collegamento sicuro e riservato con Internet

Collocazione delle Wireless Zone all'interno del campus

Perché le reti Wireless LAN

- Estensione della LAN cablata preesistente; utenti non più vincolati ai soli laboratori.
- Istituzione di aree di lavoro temporaneo (conferenze – seminari...)
- Estrema scalabilità: connettività per pochi utenti fino a LAN complete.
- Mobilità nel campus grazie alla possibilità di Roaming

Perché le reti Wireless LAN Velocità di trasferimento attualmente impiegate

tecnologia IEEE 802.11b, che opera nella frequenza dei 2.4 GHz permette connessioni fino a 11 Mbps (condivisi).

802.11g con velocità di connessione fino a 54Mbps.

Sicurezza nelle reti Wireless LAN

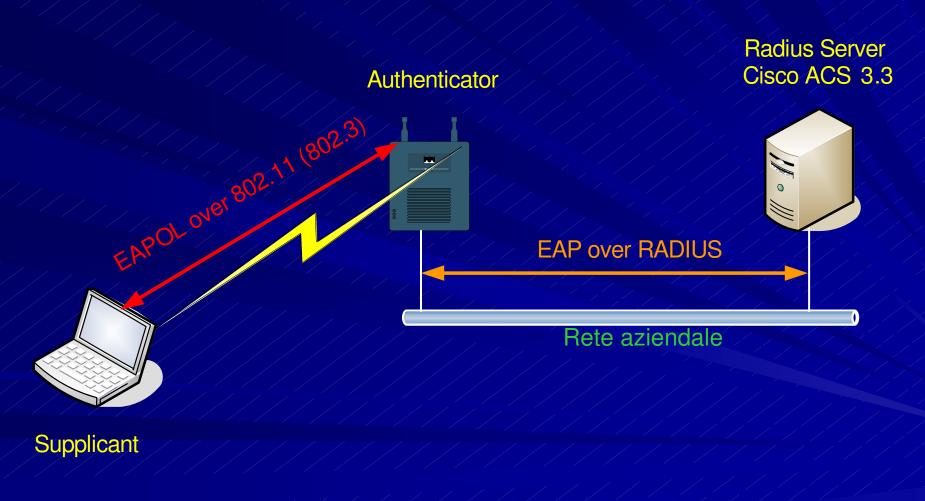
Lo standard IEEE 802.1x

Sicurezza nelle reti Wireless LAN

L'adozione dello standard IEEE 802.1x permette di garantire all'utente sicurezza nella fase d'autenticazione (invio delle credenziali) e confidenzialità della connessione mediante l'impiego di chiavi di crittografia

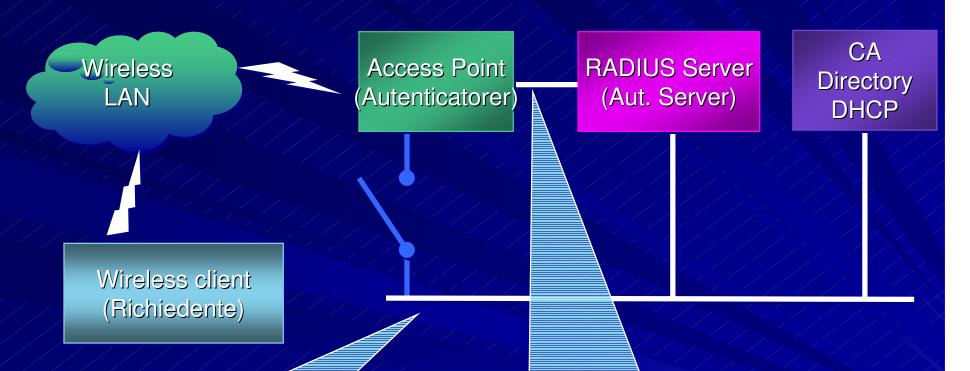
Sicurezza nelle reti Wireless LAN

Principali caratteristiche del protocollo 802.1x


- L'obiettivo è fornire un servizio (connettività) SOLO ad utenti autenticati e autorizzati
- Fornisce un architectural framework che permette l'impiego di diversi metodi d'autenticazione (smartcard, certificati, OTP, usr e pwd...)
- Impiegabile per diverse tecnologie: IEEE802.3, Token Ring, FDDI e 802.11
- Si basa su protocolli e standard preesistenti e già impiegati: Extensible Authentication Protocol (EAP)
 Remote Authentication Dial-In User Service (RADIUS)

Protocollo IEEE 802.1X

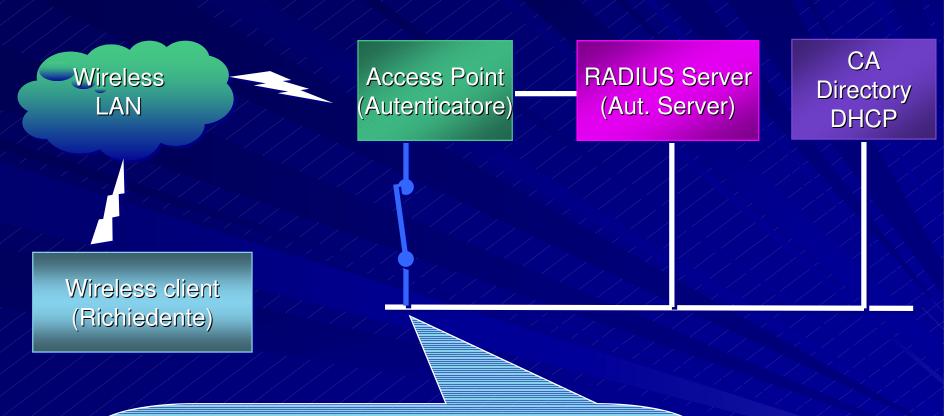
Identifica 3 entità:


- Supplicant (wireless PC card, Ethernet NIC,...)
- Authenticator (AP, switch,...)
- Authentication Server (Radius,...)

Protocollo IEEE 802.1X

C.S.I.T. Centro Servizi Informatici e Telematici

802.1x: Fase di "Association"


La porta Controlled impedisce l'accesso ai client della LAN La porta Uncontrolled permette all'authenticator di contattare il server di autenticazione

Telematici

Centro Se

Fonte:www.microsoft.it

802.1x: "Association" avvenuta

La porta Controlled adesso permette al richiedente di accedere alla LAN (e il DHCP gli rilascia un indirizzo IP)

C.S. I. Centro Servizi informatici e

Telematici

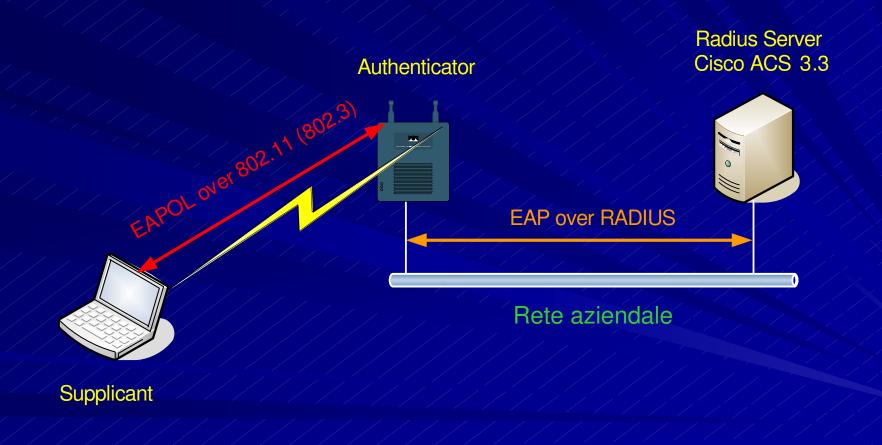
Protocollo IEEE 802.1X

All'uso delle chiavi statiche, siano WEP o WPA, 802.1x fornisce:

- Accesso al servizio previa autenticazione ed autorizzazione
- Creazione chiavi di sessione dinamiche per ogni utente
- Rotazione delle chiavi di sessione
- Autenticazione, integrità e confidenzialità a livello di singolo pacchetto

Protocollo IEEE 802.1X

Vulnerabilità del protocollo EAP:


- Debolezza nella protezione delle credenziali dell'utente nella fase di autenticazione
- Mancanza di standardizzazione nello scambio delle chiavi
- Debolezza nel supporto di fast-reconnect
- Assenza di un metodo per la gestione di fragmentation e reassembly dei pacchetti

L'introduzione di TLS permette di far fronte alle vulnerabilità di EAP sopra indicate

EAP Nel nostro caso:

PEAP (studenti e docenti)

EAP-TLS (docenti)

C.S.I.T. Centro Servizi Informatici e Telematici

PEAP

RADIUS ACS

RADIUS verifica le credenziali (eventualmente interrogando Active Directory), genera le chiavi e le inoltra Hall Apsenzione del invia il certificato per la creazione del tunnel TLS

Connection request

Connessione avvenuta: uso delle chiavi per crittografia nella comunicazione.

Lo studente inserisce usr e pwd

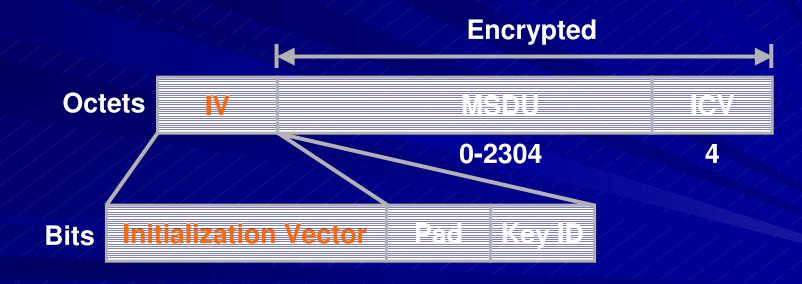
DHCP server

DC

PEAP Vantaggi

- Gli utenti possono username e password utilizzate nei laboratori didattici. Non necessità del rilascio di certificati o smartcard a tutti gli utenti.
- Username e password vengono trasmesse attarverso un tunnel TLS cifrato.
- Per l'autenticazione basata su password viene usato MS-CHAPv2.
- Non vi sono pre-shared key.
 Le chiavi sono dinamicamente generate per ogni sessione e per ogni utente

EAP-TLS


- Ad ogni utente viene assegnato un certificato digitale (X509) impiegato nella fase d'autenticazione (no password, miglior metodo d'autenticazione)
- EAP-TLS consente la mutua autenticazione Client-Radius Server
- Obbliga all'installazione una Public Key Infrastructure
- Modalità di distribuzione del certificato agli utenti

Chiavi di cifratura

Attualmente sono supportate sia le chiavi WEP che le chiavi WPA-TKIP

Chiavi di cifratura - WEP

WEP: algoritmo di cifratura RC4 che impiega chiavi ottenuto dalla combinazione della WEP (40 o 104 bit) + IV Initialization Vector di 24 bit a formare quindi chiavi a 64 o 128 bit, IV cambia ad ogni pacchetto.

Chiavi di cifratura - WEP

- WEP: algoritmo di cifratura RC4 che impiega chiavi ottenuto dalla combinazione della WEP (40 o 104 bit) + IV Initialization Vector di 24 bit a formare quindi chiavi a 64 o 128 bit,
 - IV cambia ad ogni pacchetto.
- Una debolezza nell'implementazione delle chiavi WEP da parte dell'RC4 genera alcuni IV detti deboli "weak" che "trasportano" con se informazioni sulla chiave impiegata.
- La cattura di un numero sufficiente di weak-IV (fino a 256 per ogni byte della chiave) permette di risalire alla chiave di cifratura.
- La "vita" di una chiave dipende dall'intensità del traffico, si parla comunque di:
 - minuti per chiavi a 40 bit
 - alcune ore per chiavi a 104 bit

Chiavi di cifratura WEP

- In 802.1x le chiavi sono dinamiche, generate ad ogni nuova autenticazione dell'utente.
- Le chiavi impiegate, nel nostro caso, sono a 104 bit (128 bit).
- L'AP chiede la riautenticazione dell'utente ogni 600 sec (con conseguente generazione di nuove chiavi), prima cioè che un attaccante catturi un numero sufficiente di weak-IV.

Chiavi di cifratura WPA-TKIP

Cerca di risolvere le debolezze delle WEP introducendo:

- IV a 48 bit (riduce i tempi di riuso del vettore)
- Per-packet key

Message intergrity code ("Michael")

Chiavi di cifratura

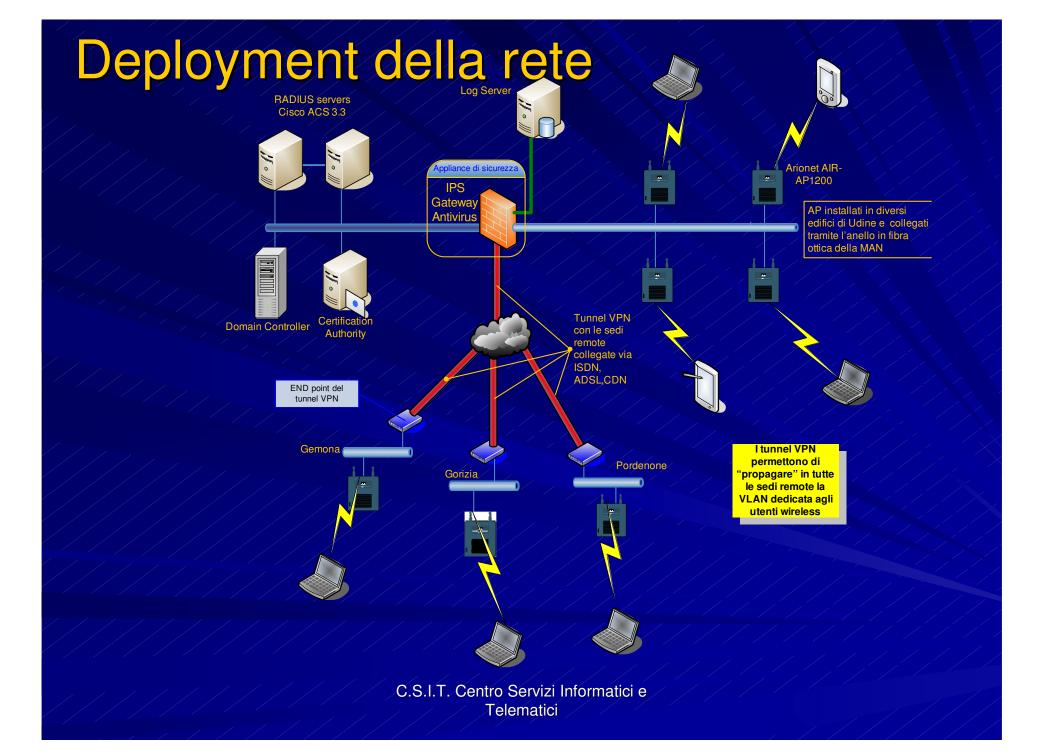
	WEP	WPA ///			
Authentication	Mutual authentication through pre- shared secret (WEP key) or 802.1x	Mutual authentication through pre- shared secret (master key) or 802.1x			
Keying	Global shared key or dynamic keying through 802.1x	Either global shared key or dynamic keying through 802.1x			
Encryption	RC4, with per-packet keys constructed by concatenating WEP key and random initialization vector	RC4, with per-packet keys constructed from hashed WEP key and serially increasing initialization vector			
Message Integrity	32-bit CRC	32-bit CRC plus Message Integrity Code (MIC)			
Implementation	Typically through RC4 chips in access point	In software, using existing hardware to perform RC4 processing			
The Good News	None	Eliminates known WEP flaws, easy to upgrade enterprise access points and wireless clients			
The Bad News	Practically useless from a security perspective; difficult to deploy C.S.I.T. Centro Servizi Informatic	Difficult and potentially expensive to deploy, degraded performance, not available for many environments, not a complete security architecture			

C.S.I.T. Centro Servizi Informatici e

Telematici

Chiavi di cifratura

Perché sono mantenute sia WEP che WPA

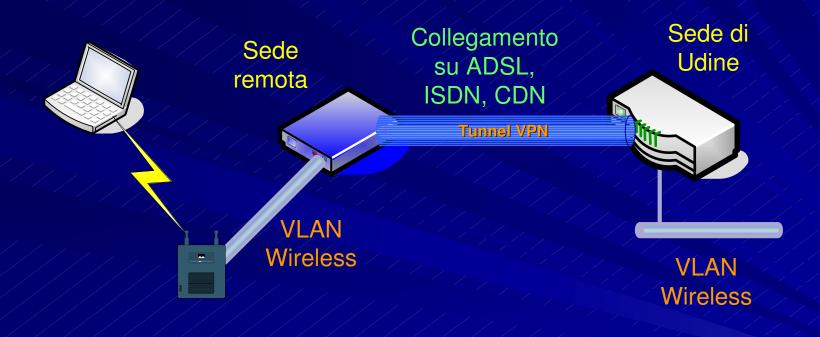

- Al momento della progettazione della rete (giugno 2003) le schede wireless e i SO più diffusi supportavano solo WEP.
- L'uso di WPA comporta aggiornamenti software e firmware (Windows XP SP2 per esempio) che alcuni utenti non hanno ancora effettuato.
- Le chiavi WEP verranno dismesse entro il 31/12/2005

riassumendo, le principali componenti sono:

- Dispositivi end-user: PC dotati di scheda di rete wireless (Windows XP SP1 o SP2, Windows 2000 SP3/4, Mac OSX), Pocket PC ecc. con supporto 802.1x e chiavi WEP o WPA
- Access Point: componente d'accesso tra la rete cablata ed i vari dispositivi wireless (PC, PDA,ecc...). Nel nostro caso si impiega Cisco AP AIRONET 1200
- Server di controllo per l'accesso: server RADIUS Cisco ACS3.3, Certification Authority, Active Directory, DHCP server

- L'utenza wireless viene concentrata in una sola sottorete (VLAN)
- Gli indirizzi IP vengono assegnati via DHCP
- Tutto il traffico da e verso i client wireless viene filtrato da un firewall

Appliance di sicurezza: features

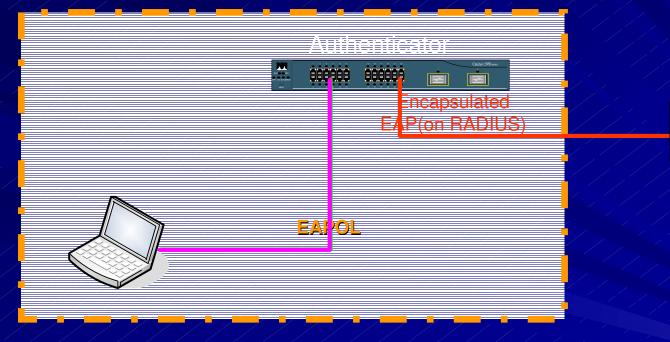


Firewall:stateful filtering

50000	/14/2005 :06:10.38	4 Notice	Network Access	TCP connect	on 158.110. XXX.XXX	, 3263, X1	158.110. XXX.XXX ,	445, X0	TCPSMB	4 (WAN->LAN)
2.30	/14/2005 :05:52.68	8 Info	Network	TCP stateful inspection; In flag; TCP pac dropped		XX , 80, X1	158.110. XXX.XXX, 4	6606, X3		
305	11/14/ 23:15:	Ale	nt Intru Prev	sion <u>Possib</u> ention	le port scan dropped X1	7.169. XXX,XX ,	80, 158.110. XXX.X 1883, X3	list,	P scanned port , 1878, 1879, 31, 1880, 1882	
306	Gateway Anti-Virus 11/15/2005									>WAN)
307	295 11	/11/2005 :29:36.048	Alert	Intrusion Prevention	Anti-Spyware Prevention CoolWebSearch ActiveX download (Browser HiJa Danger Level: High	Alert: component	207.68. XXX.XX , 80, X1	158.110. X 4544, X0	XXX.XXX	
	79h	/11/2005 :29:35.320	Alen	Intrusion Prevention	IPS Prevention Alert: ICM Reply, Priority: Low	<mark>IP Echo</mark> 6	6.98. XXX.XXX , 8, X1	158,110. X 768, X3	XXX.XXX	
	797	/11/2005 :29:30.480	Depug	Network Access	Broadcast packet droppe	ed 15 X1	8.110 .XXX.XXX , 67,	255.255.2 68	255.255, Proto	icol:68

C.S.I.T. Centro Servizi Informatici e Telematici

802.1x per il wired

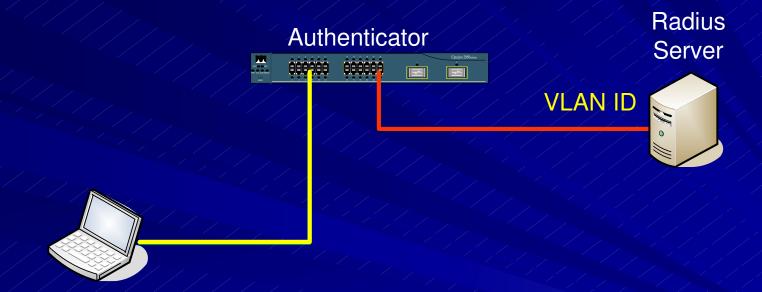

Autenticazione degli utenti mobili che utilizzano i punti rete cablati all'interno del campus

Authentication Authorization Accounting

- Utenti del convitto della Scuola Superiore
- Docenti che necessitano di connessione presso le aule didattiche

802.1x per il wired

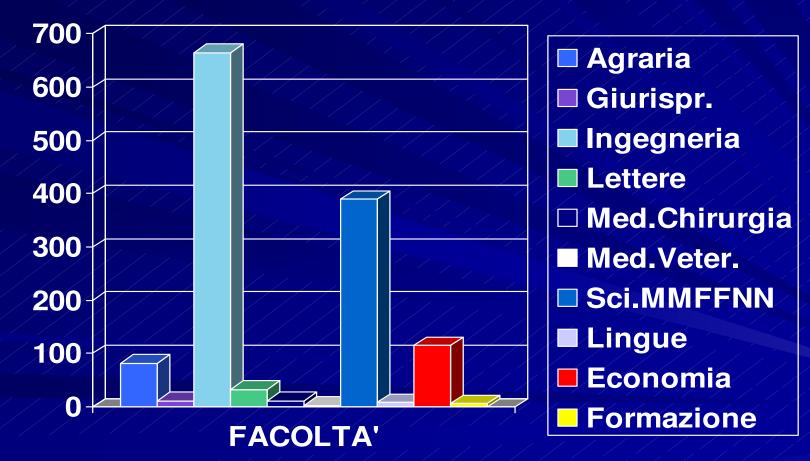
Convitto Scuola Superiore



Radius Server

802.1x per il wired

Aule didattiche



Considerazioni finali

- schieramento di una certification Authority per la distribuzione di certificati PKCS12 al fine di permettere l'estensione dell'uso del protocollo EAP-TLS anche agli studenti
- soppressione delle chiavi WEP entro il 31/12/2005
- Sperimentazione dei nuovi apparati ARUBA
- schieramento del dispositivo Cisco WLSE
- Schieramento delle VPN-SSL

Utenti del servizio Wi-Fi

Totale utenti: circa 1400

C.S.I.T. Centro Servizi Informatici e Telematici

Fattori di successo (1/3)

- Politici/Organizzativi:
 - Progetto fortemente voluto dalla dirigenza fin dal 2002.
 - Gli studenti ottengono più postazioni ad accesso libero per collegarsi in rete.
 Quest'anno (2005) hanno richiesto la copertura di ogni sede universitaria.
 - Meccanismo di creazione automatizzata delle credenziali di accesso ai sistemi informatici e loro distribuzione stile "busta bancomat" all'atto dell'immatricolazione

C.S.I.T. Centro Servizi Informatici e Telematici

Fattori di successo (2/3)

Tecnologici

- Utilizzate credenziali "sensibili" per l'autenticazione degli studenti (sono legate alla gestione della carriera).
- Limitazione della potenza e della copertura RF e chiusura del servizio contestuale con la chiusura degli edifici.
- Introduzione di un sistema di Firewall/IPS per evitare spiacevoli sorprese

Fattori di successo (3/3)

- Iniziative collaterali:
 - Attivazione contestuale alla partenza del servizio di una convenzione per l'acquisto agevolato di PC dotati di scheda Wi-Fi (siamo all'inizio del 2003 e non molti PC portatili avevano la scheda) preconfigurato per collegarsi in rete wireless.
 - Successivamente: attivazione iniziativa per concedere scheda Wi-Fi in comodato d'uso gratuito.

Criticità emerse (1/2)

- Tecniche/Logistiche
 - Necessità di adeguamento dell'impianto elettrico per consentire la ricarica delle batterie
 - Difficoltà di installazione e gestione degli access-point

Criticità emerse (2/2)

Operative

- Problemi legati al tempo impiegato nel supporto agli utenti
- Difficoltà di attivazione e gestione dell'accordo a tre fra Ateneo, Istituto di Credito, produttore di PC

Riferimenti

- An Initial Analysis of the IEEE 802.1X Standard
 Authors: Arunesh Mishra, William A.Arbaugh (Department of Computer Science University of Maryland)
- 802.1X Port Based Network Access Control http://www.ieee802.org/1/pages/802.1x.html
- "Extensible Authentication Protocol (EAP)"
 http://www.rfc-archive.org/getrfc.php?rfc=3748
- PPP EAP-TLS Authentication Protocol http://www.ietf.org/rfc/rfc2176.txt
- Protected EAP Protocol (PEAP)
 http://ietfreport.isoc.org/all-ids/draft-josefsson-pppext-eap-tls-eap-06.txt
- Protected EAP Protocol (PEAP) Version 2 http://ietfreport.isoc.org/all-ids/draft-josefsson-pppext-eap-tls-eap-10.txt
- Wireless_parte2.ppt http://download.microsoft.com/download/2/f/2/2f2f8362-aab9-448dbc8d-110422af7430/Wireless_parte2.ppt

Riferimenti

"Wi-Fi Protected Access:Strong, standards-based, interoperable security for today's Wi-Fi networks)"

http://www.wi-fi.org/membersonly/getfile.asp?f=Whitepaper Wi-Fi Security4-29-03.pdf

- EAP-TLS Deployment Guide for Wireless LAN Networks

 http://www.cisco.com/warp/public/cc/pd/sqsw/sq/tech/acstl-wp.pdf
- Wepcrack
 http://sourceforge.net/projects/wepcrack