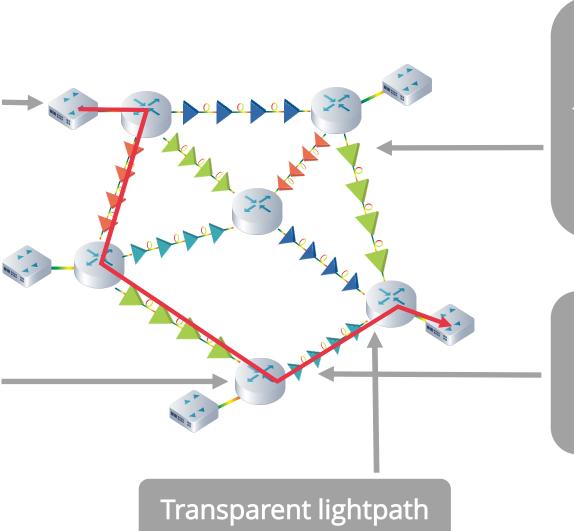
AI-ASSISTED CONTROL OF OPTICAL DATA TRANSPORT

VITTORIO CURRI DET – POLITECNICO DI TORINO curri@polito.it

OPTICAL TRANSPARENT NETWORKS

Optical transponders: Tx/Rx a LP at λ in B_{opt} operating at R_b over WDM grid using DP coherent optical technologies

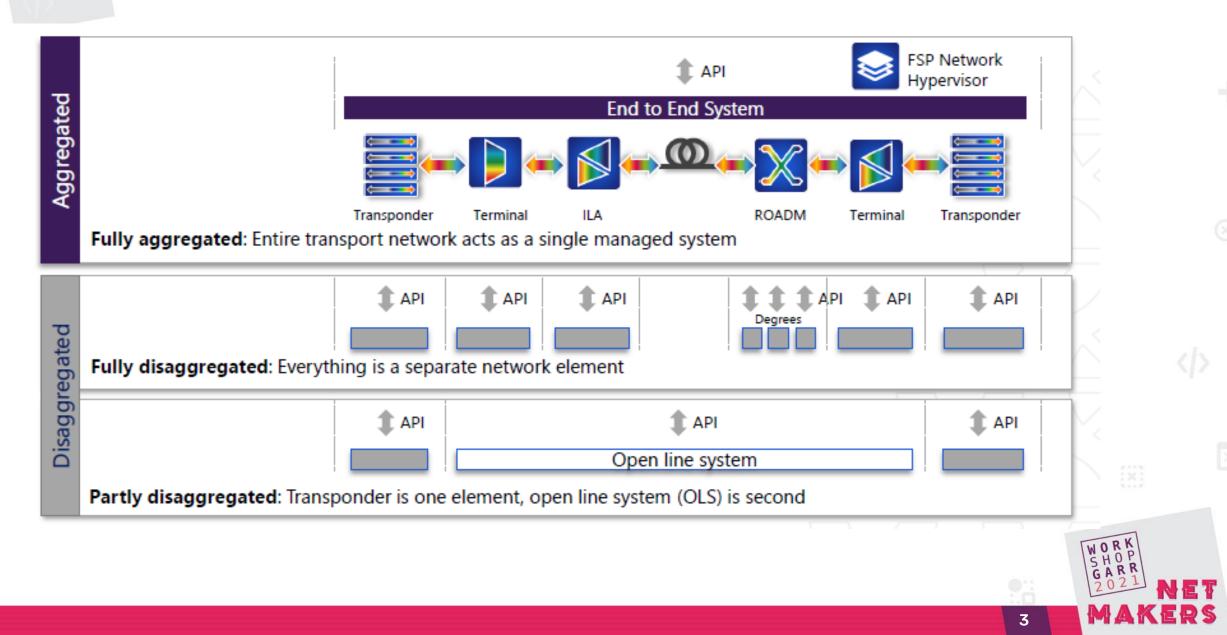
ROADMs: Transparently routes any λ in B_{opt} from any input direction to any output direction according to the WDM grid



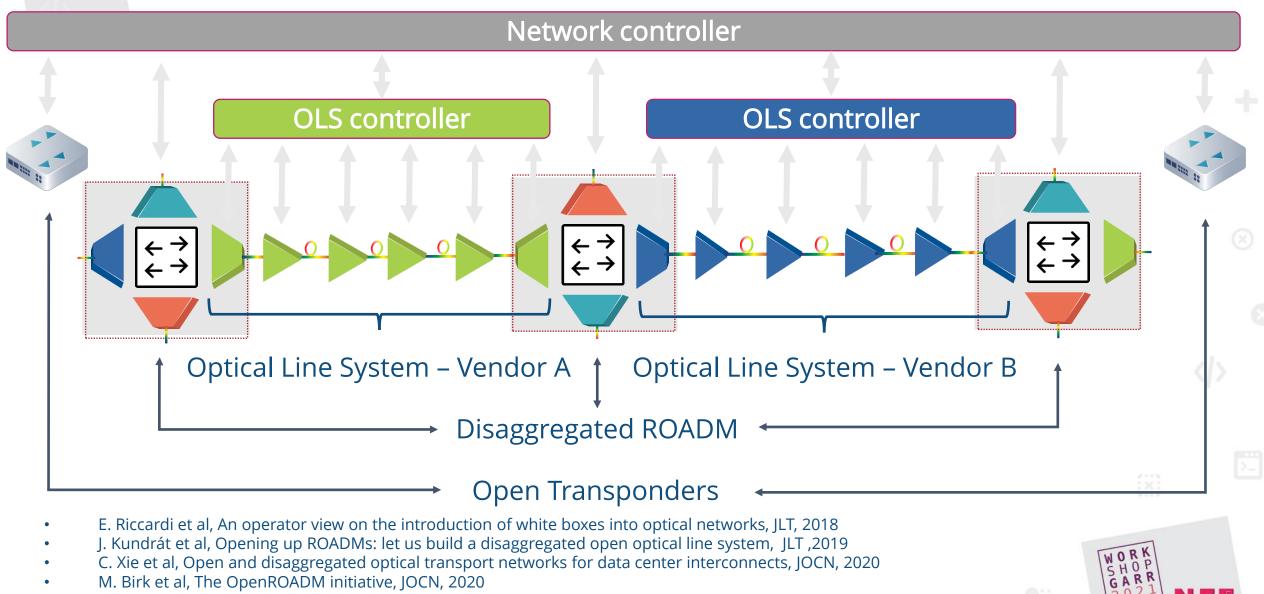
Optical amplifiers: Transparently amplify all λ in B_{opt}

Optical fibers: Transparently transport all λ in B_{opt}

AGGREGATED AND DISAGGREGATED NETWORKS

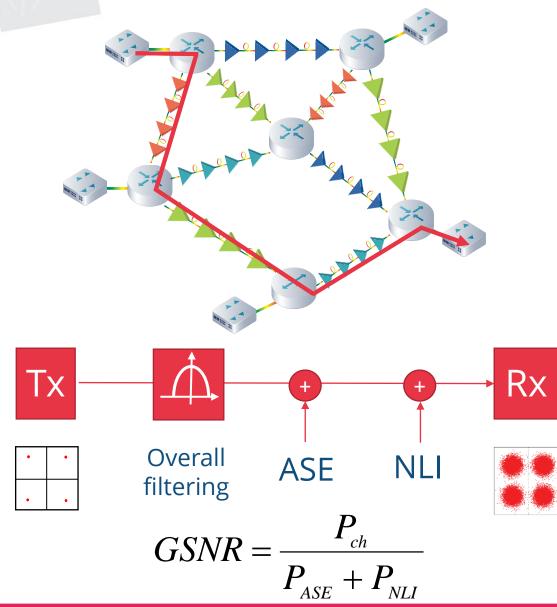


PARTIALLY DISAGGREGATED NETWORKS



• H. Nishizawa et al, Open whitebox architecture for smart integration of optical networking and data center technology, JOCN, 2021

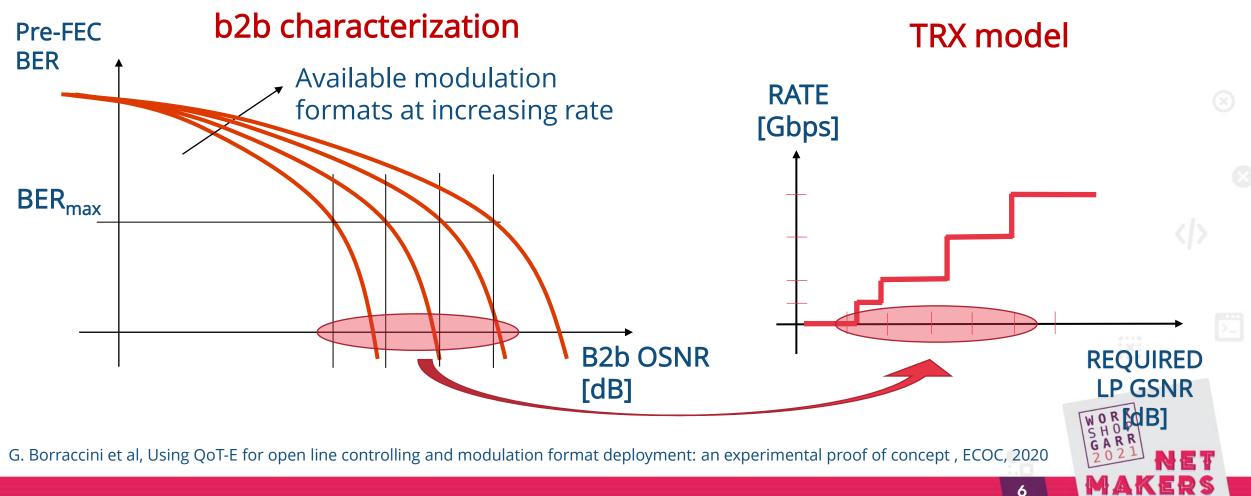
LIGTHPATH = AWGN NONLINEAR CHANNEL



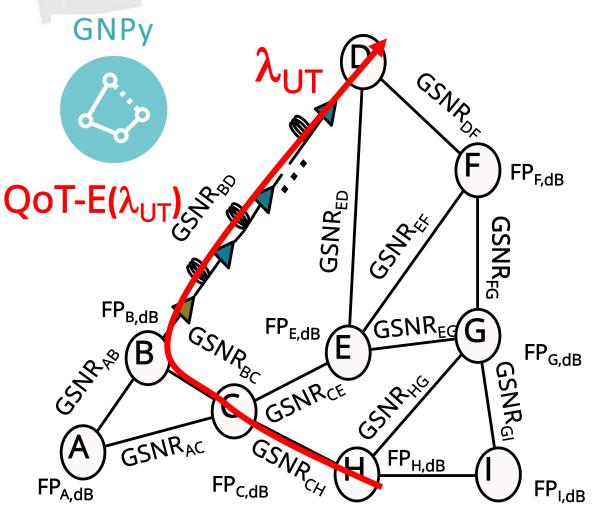
- Each LP is a transparent pointto-point digital connection deploying DP coherent optical technologies
- The model for each transparent[®] channel is AWGN nonlinear channel affected by
 - Gaussian ASE noise from
 amplifiers
 - Gaussian NLI from nonlinear crosstalk in fiber propagation
 - Filtering penalties

TRX MODEL

- TRX are typically flexible supporting multiple modulation formats
- The exploited FEC technology defines the maximum tolerable BER=BER_{max}
- From b2b characterization we obtain a full model for transceiver



DIGITAL TWIN OF THE OPTICAL TRANSPORT



$$GSNR(\lambda_{UT}) = 10\log_{10}\left(\frac{1}{\frac{1}{GSNR_{CH}} + \frac{1}{GSNR_{BC}} + \frac{1}{GSNR_{BD}}}\right) + -\left(\frac{FP_{H,dB} + FP_{C,dB} + FP_{C,dB}}{FP_{B,dB} + FP_{V,dB}}\right) \quad [dB]$$

ps

nm

7

$$\Delta \tau \left(\lambda_{UT} \right) = \Delta \tau_{CH} + \Delta \tau_{BC} + \Delta \tau_{BD} \quad \left[\text{ms} \right]$$

 $D_{acc}\left(\lambda_{UT}\right) = D_{acc,CH} + D_{acc,BC} + D_{acc,BD}$

V. Curri, Software-defined WDM optical transport in disaggregated open optical networks, ICTON, 2020

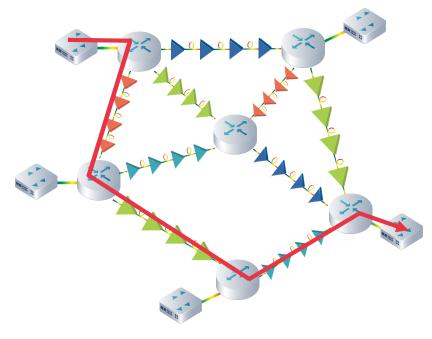
SOFTWARE DEFINED OPTICAL NETWORKING

HIERARCHICAL CONTROLLER

OPTICAL CONTROLLER

Optical circuits controller

- Centralized
- Global vision
- Find a transparent source-to destination lightpath
- Set swithching matrices
- Evaluate the LP QoT
- Set the modulation format in TRX



Optical power controllers

GNPy

- Distributed
- Local on each OLS
- ROADM-ROADM vision
- Define the optimal power spectral density at fibers input

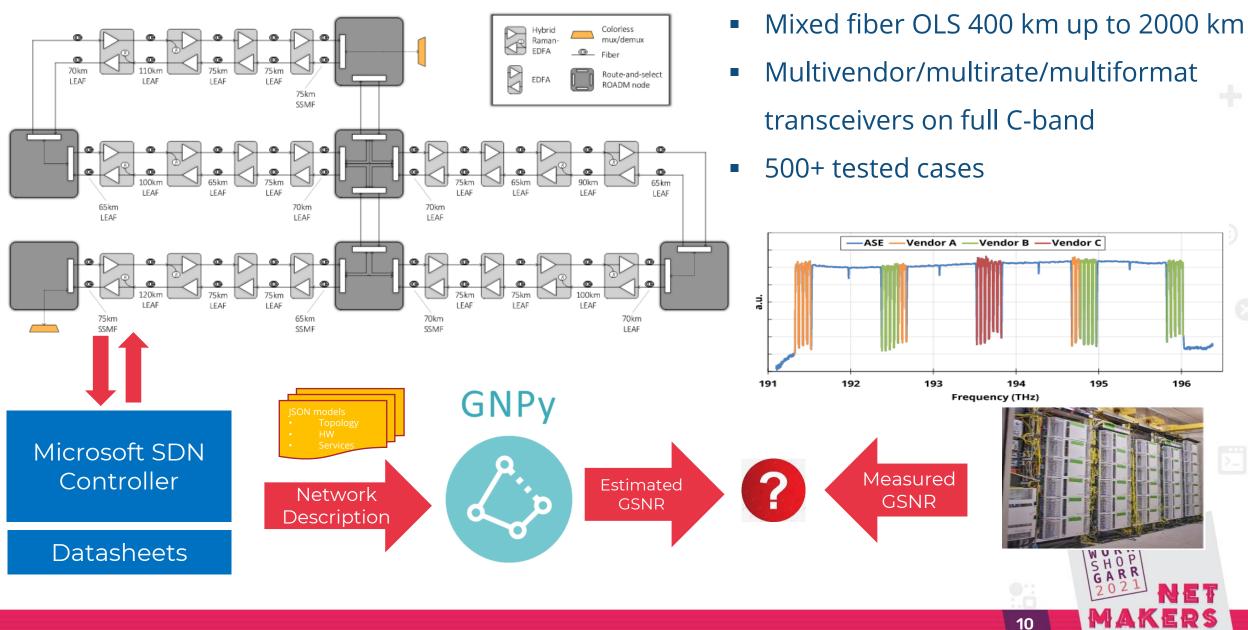
8

• Set amplifiers

USING MACHINE LEARNING IN THE DIGITAL TWIN

WOR

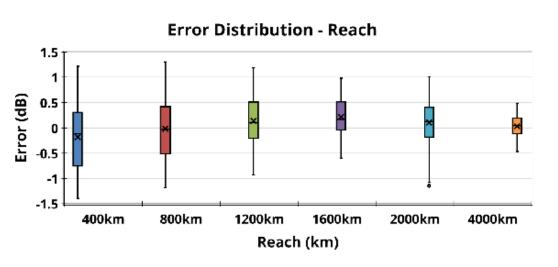
THE MSFT EST-BED



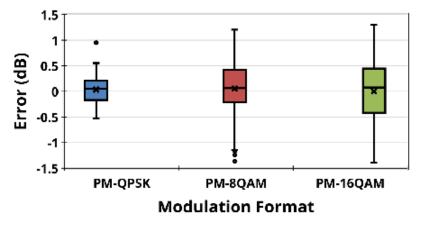
6 ROADMS

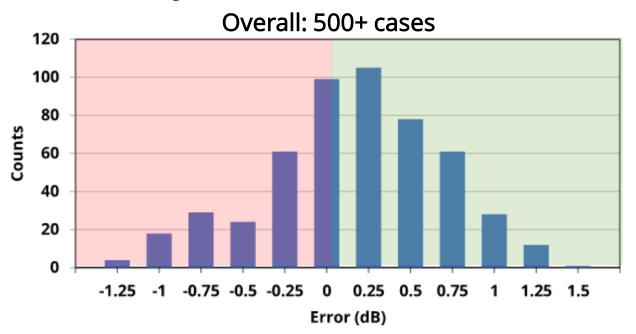
GNPy QoT-E ACCURACY

Error = Measured GSNR – GNPy GSNR



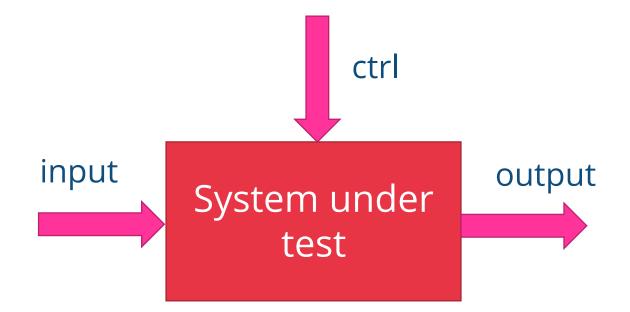
Error distribution - Modulation Format





- Inaccuracy mainly due to lack of exact knowledge of models for network elements: Machine learning may help
- Need for dataset!

DIRECT AND INVERSE ML MODEL



- Direct ML model: the ML agent is trained in order to predict the I/O behavior given the ctrl
- Inverse ML model: the ML agent is trained to predict the needed ctrl to obtain a wanted I/O behavior

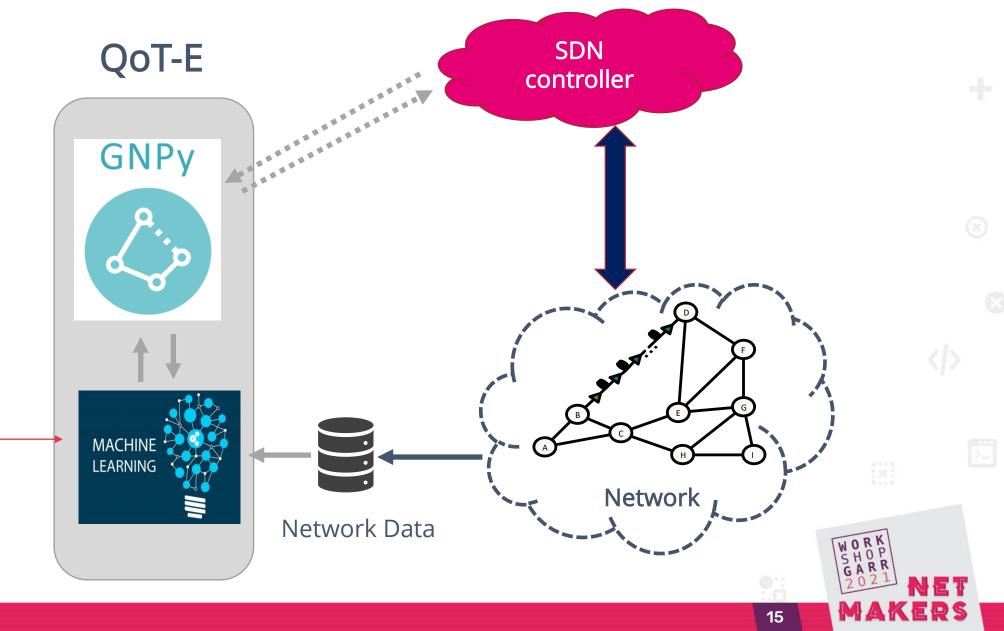
SELF- AND TRANSFER-LEARNING

- The ML agent is trained on the system under test and it is used on that specific systems
- The ML agent is trained on a system, then it is applied to a "sister system"
 - As "sister system" we consider a system we suppose is sharing with the training system most of the fundamental mechanism defining system performance
 - In optical networking, a sister system can be a network using the same HW on a different geographical topology

MACHINE-LEARNING BASED HW MODEL

- A ML model can replace a mathematical model of network elements
- Both inverse and direct ML models are useful to define the needed control (inverse) or the GSNR impairment (direct) of a component
- It can be useful for all NE for which a dataset can be easily obtained before installing the HW as for instance EDFA, switches
- It is more difficult to be applied when we need a dataset from the field

MACHINE LEARNING ASSISTED L-PCE

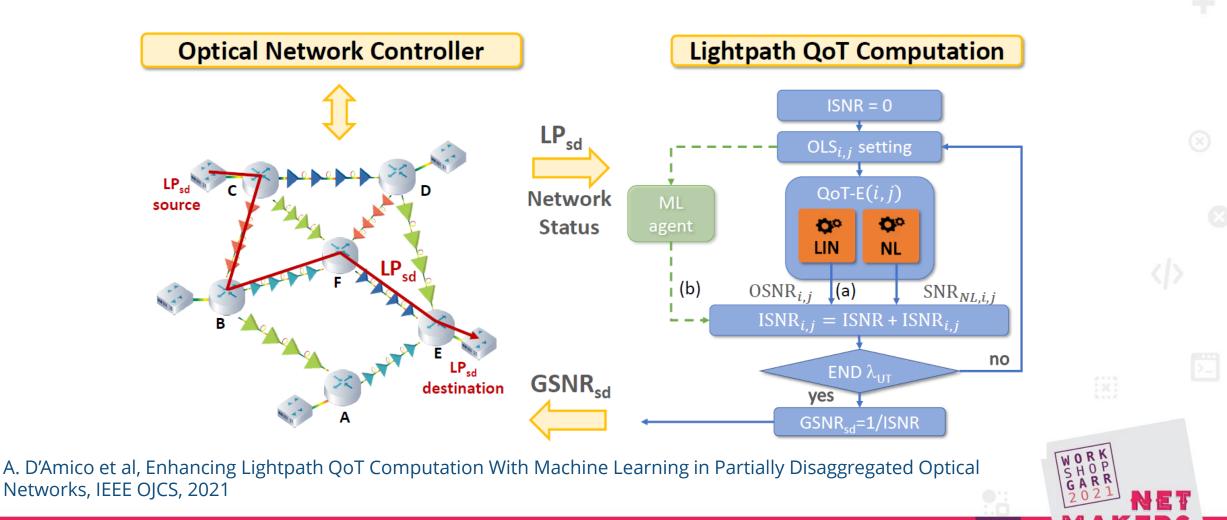


Both selfand crosstraining options for training dataset

USING ML TO PREDICT THE OSNR COMPONENT OF THE GSNR: EXPERIMENTAL PoC

ENHANCING GNPy WITH MACHINE LEARNING

ML agent trained by ASE shaped noise do predict the OSNR

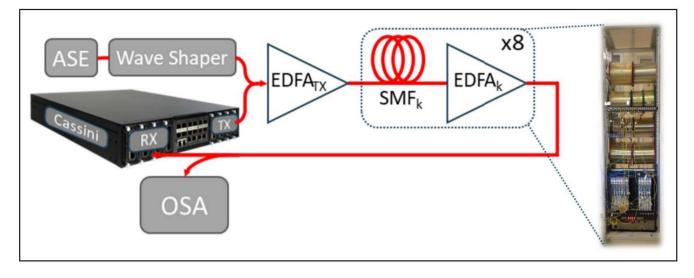


APPLICATION SCENARIO

- Reliable QoT computation with different spectral load
- Optical amplifiers may strongly vary their performance with the spectral load given the control
- We suppose that amplifier are not reachable individually
- We suppose to be able to collect a data set with different input spectral loads obtained by ASE shaping
- We suppose to rely on optical channel monitors at the input and output OLS ROADMs
- We target to train a ML agent that replaces the evaluation of the OSNR component of QoT by GNPy

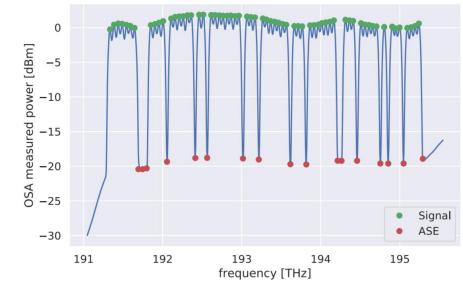
EXPERIMENTAL SET-UP AND DATASET

EXPERIMENTAL SETUP



- 8 span line
- Commercial amplifiers set to the optimal working point according to nominal values
- Waveshaper micking ROADM in generating shaped noise
- OSA at the receiver mimicking the OCM
- Two pluggable DCO to test the effectiveness on the method

DATASET

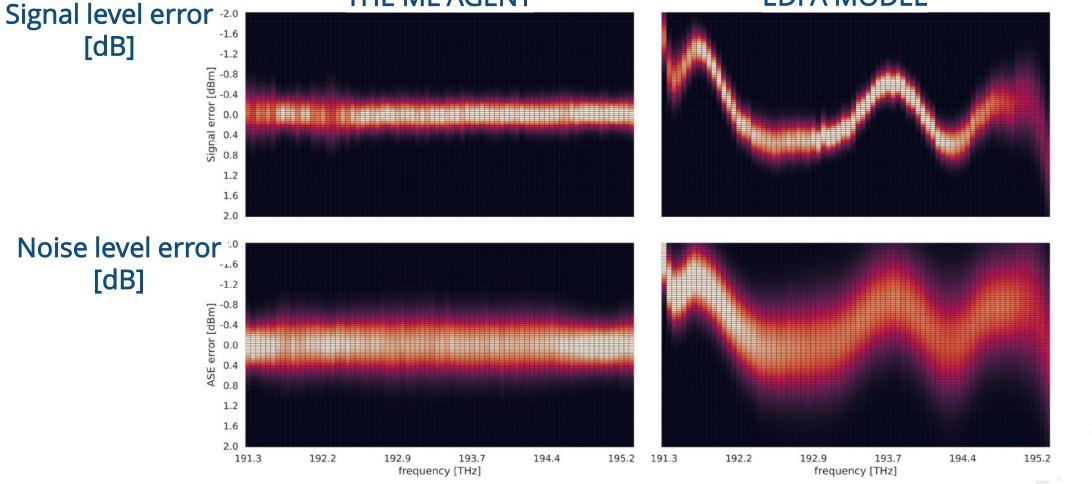


- Waweshaper to generate different spectral loads (96 ch in the C-band)
- 2520 spectral load configurations
- For each we collect
 - the amount ASE noise for the OFF channels
 - the overall gain for ON channels RK

PERFOMANCE OF TRAINED MACHINE LEARNING AGENT FOR OSNR PREDICTION

PREDICTIONS BY THE ML AGENT

PREDICTIONS USING NOMINAL G AND NF FOR EDFA MODEL



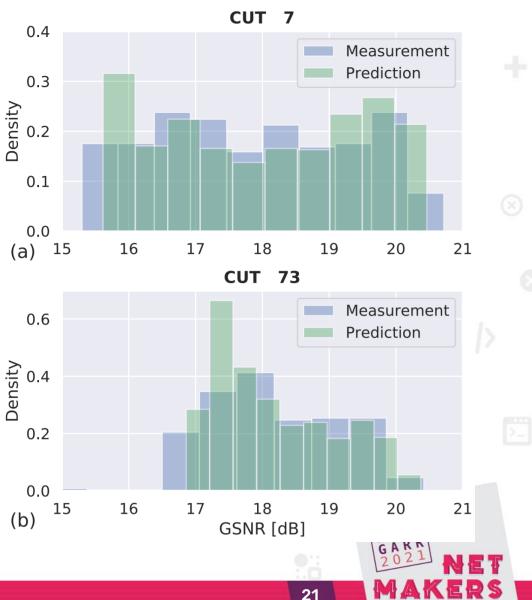
20

WORK SHOP GARR

Makers

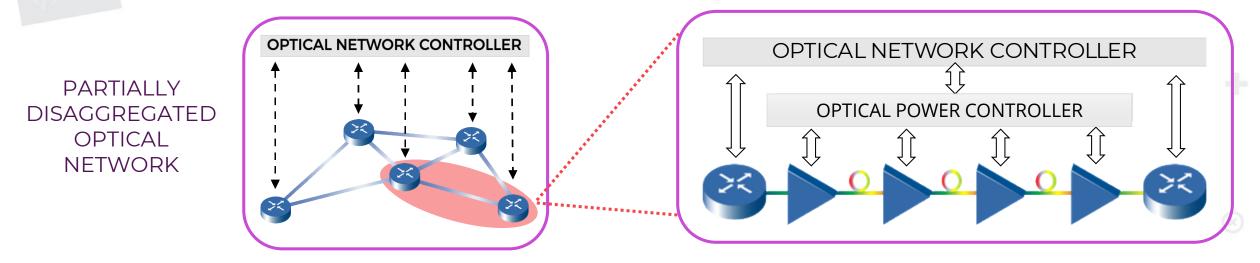
GSNR COMPUTATION: GNPy + ML AGENT

- The ML agent to predict the OSNR is used within GNPy to predict the overall GSNR
- Prediction results are compared to measurements obtained by testing two modulated channels on two channels: 7th and 73rd
- GSNR is obtained from pre FEC BER measurement converted to GSNR by b2b characterization
- Large set of spectral load is tested



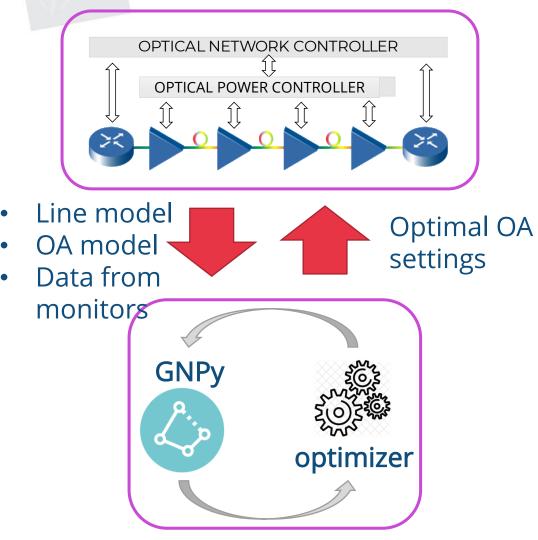
NON DATA-DRIVEN COGNITIVE AND AUTONOMOUS OPTICAL POWER CONTROLLER

OPTICAL POWER CONTROLLER



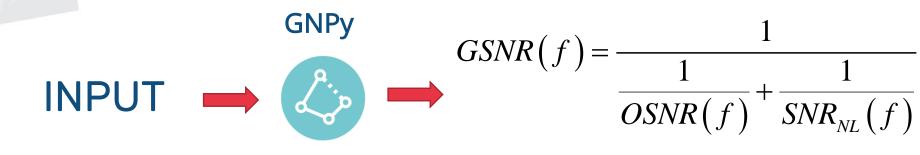
- The OPC sets the working point (e.g, gain and tilt) of OAs in the OLS
- In partially disaggregated network, independent OOPC for each ROADM-to-ROADM OLS
- The purpose is to minimize the propagation impairment on any LP propagating on the OLS
- The OPC is typically static and traffic agnostic

OPC BASED ON GNPy



- Feeding GNPy with OA models and possible data from monitors
- Possible training or probing phase
- GNPy computes the GSNR for every frequency varying the OA setting
- An optimizer engine drives the process to the optimal setting given the target
- Typical targets
 - Maximizing GSNR: Max{<GSNR(f)>}
 - Flattening GSNR: Min{<|GSNR(f)-<GSNR>|>2}

QoT-E FOR OPC: INPUT DATA



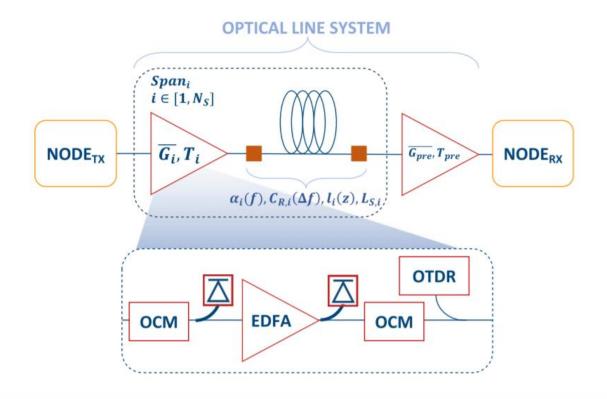
- OSNR(f)← OA model
 - Gain(f) and NF(f) for every power level and gain and tilt setting
 - OA model
 - from accurate characterization (look-up table
 - from trained ML agent

- SNR_{NL}(f)
 - Need accurate line description
 - Fiber type (α (f), D(f) A_{eff}) and length
 - Connector losses
 - IMPOSSIBLE TO GET A DATASET FOR DATA DRIVEN APPROACH BECAUSE IT NEEDS DEPLOYED CHANNELS

AUTONOMOUS LINE CHARACTERIZATION

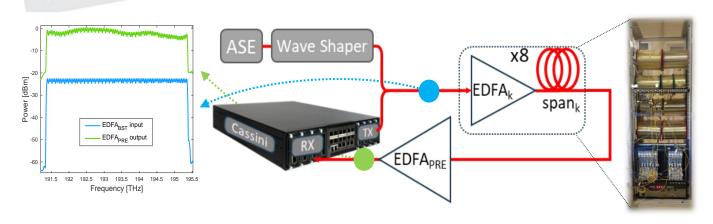
Cognitive and autonomous QoT-driven optical line controller

GIACOMO BORRACCINI,^{1,*} [©] ANDREA D'AMICO,¹ [©] STEFANO STRAULLU,² ANTONINO NESPOLA,² STEFANO PICIACCIA,³ ALBERTO TANZI,³ GABRIELE GALIMBERTI,³ STEFANO BOTTACCHI,⁴ SCOTT SWAIL,⁴ AND VITTORIO CURRI¹ [©]



- Suppose to rely on OCM and OTDR
- Need for a single probing action
- Evolutionary algorithm to classify each fiber span to obtain α(f), D(f) A_{eff}, Lspan
- NOTE: probing can be done after every fiber cut

EXPERIMENTAL PoC



- <u>Amplifiers</u> → commercial EDFAs
 - Lab characterized
- <u>Fibers</u> → 8 spans of roughly 80 km
 - Physical characteristics:
 - Attenuation profile
 - Chromatic dispersion
 - Kerr effect
 - Stimulated Raman scattering

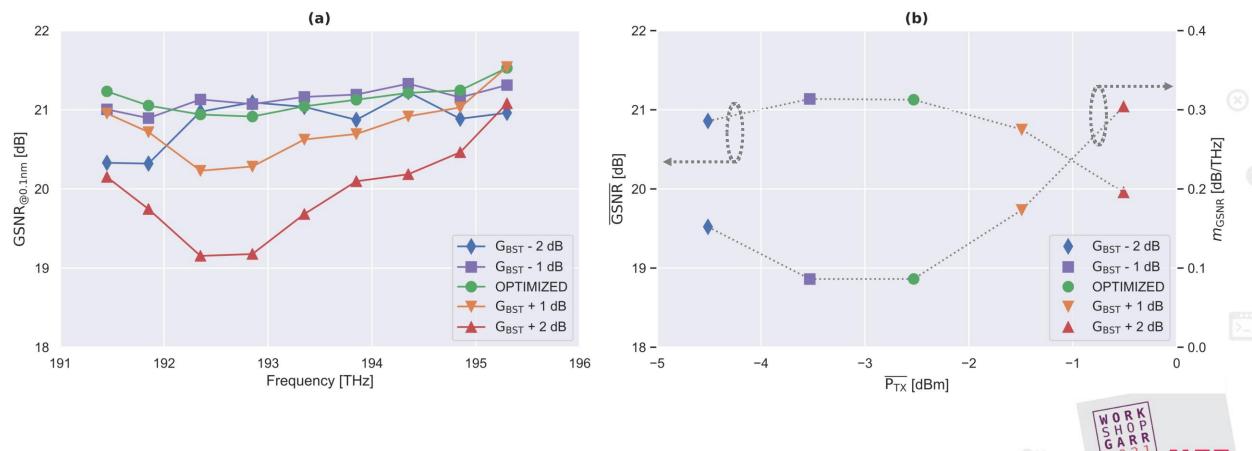
- Input WDM Spectrum → 80 ASEshaped channels through a commercial wave shaper filter (1000S, Fisinar)
- Modulated channels → generated by flexible CFP2-DCO coherent modules from Lumentum plugged in the Edgecore Cassini AS7716-24SC

AUTONOMOUS CHARACTERIZATION RESULTS

Span	<i>L</i> _{<i>S</i>} [km]	$C_R \left[(\mathbf{W} \cdot \mathbf{km})^{-1} \right]$	$D \left[ps/(nm \cdot km) \right]$	$\alpha(f_{\text{OTDR}}) [\text{dB/km}]$	l(z=0) [dB]	$l(z=L_S) [dB]$
#1	80.4	0.42	16.7	0.191	0.9	0.1
#2	80.4	0.54	3.8	0.194	2.0	1.0
#3	80.6	0.60	8.0	0.188	0.6	0.3
#4	79.9	0.73	4.4	0.196	0.1	3.6
#5	79.8	0.60	8.0	0.199	0.1	2.3
#6	75.8	0.73	4.4	0.210	1.7	0.4
#7	64.7	0.44	16.7	0.189	0.2	3.0
#8	78.6	0.54	3.8	0.187	0.3	0.1

EXPERIMENTAL PoC: RESULTS

- Using autonomous line characterization Gain and tilt of each amplifier are jointly optimized
- Results are tested using modulated channels generated by pluggable DCO tuned on 9 different wavelength in the C-band



CONCLUSION

- Coherent optical technologies enable Software-Defined Optical Networking
- Abstraction and virtualization of WDM optical transport is based on accurate QoT-E
- Lacking knowledge of exact models for physical layer: mainly, amplifiers and fiber span
- If dataset are available or can be obtained, ML mdels of NE or subsystem is extremely effective
- If dataset are difficult to get or scenario varies with time, autonomous technics are needed and proven effective

WORKSHOP GARR 2021 8-12 NOVEMBRE 2021

THANK YOU FOR YOUR ATTENTION

TELECOM INFRA PROJECT

CONTACTS

CURRI@POLITO.IT

LUMENTUM

planet.polito.it