
Giacinto Donvito
INFN-Bari
ReCaS
giacinto.donvito@ba.infn.it

Soluzione di Software as a Service (SaaS)
per Applicazioni Scientifiche.
Come sfruttare risorse di calcolo e
storage distribuito in Grid tramite
WorkFlow in modo semplice e
trasparente

1

mailto:giacinto.donvito@ba.infn.it
mailto:giacinto.donvito@ba.infn.it

• Overview of the Use Cases
• Overview of the SaaS framework
• Front-end and Back-end

overview
• Job Submission features
• Data Management features

• Test and results
• Conclusions and Work in

progress

Outlook

2

BioVeL is an international network of
experts

•Connects two scientific communities: IT and biodiversity.

•Offers an international network of IT expert scientists in
BioVeL’s data processing services.

•Shares expertise in workflow studies among BioVeL’s
users.

•Fosters an international community of researchers and
partners on biodiversity issues.

•BioVeL is an e-laboratory that supports research on
biodiversity using large amounts of data from cross-
disciplinary sources.

Biodiversity Virtual e-Laboratory

3

Biodiversity Virtual e-Laboratory
BioVeL	
 is	
 a	
 consor-um	
 of	
 15	
 partners	
 from	
 9	
 countries

1. Cardiff University, UK – Coordinator
2. Centro de Referência em Informação

Ambiental, Brazil
3. Foundation for Research on Biodiversity,

France
4. Fraunhofer-Gesellschaft, Institute IAIS,

Germany
5. Free University of Berlin – Botanical

Gardens and Botanical Museum, Germany
6. Hungarian Academy of Sciences Institute of

Ecology and Botany, Hungary
7. Max Planck Society, MPI for Marine

Microbiology, Germany
8. National Institute of Nuclear Physics, Italy
9. National Research Council: Institute for

Biomedical Technologies and Institute of
Biomembrane and Bioenergetics, Italy

10.Netherlands Centre for Biodiversity (NCB
Naturalis), The Netherlands

11.Stichting European Grid Initiative,
The Netherlands

12.University of Amsterdam, Institute of
Biodiversity and Ecosystem Dynamics,
The Netherlands

13. University of Eastern Finland, Finland
14. University of Gothenburg, Sweden
15.University of Manchester, UK

4

• Import data from one’s own
research and/or from existing
libraries.

• “Workflows” (series of data analysis
steps) allow to process vast
amounts of data.

• Build your own workflow: select and
apply successive “services” (data
processing techniques.)

• Access a library of workflows and
re-use existing workflows.

• Cut down research time and
overhead expenses.

• Contribute to LifeWatch and
GEO BON.

Biodiversity Virtual e-Laboratory
BioVeL is a powerful data processing tool

Part of a workflow to study the
ecological niche of the horseshoe crab

5

Study on the ecological niche of the south east Asian
horseshoe crab, an endangered species:
•Import south east Asian data from external library
•Apply succession of “services” = workflow
•Result: ecological niche map

Biodiversity Virtual e-Laboratory
Showcase study 1: create a workflow*

* courtesy Matthias Obst, University of Gothenburg, Sweden 6

Study on the ecological niche of the American horseshoe crab
• Import American data
• Re-use south east Asia crab study workflow
• Result: ecological niche map for American horseshoe crab
Compare the ecological niches of the south east Asian and
American crabs.

Potential study of the ecological niche of an African animal
• Import African data
• Re-use horseshoe crab study workflow
• Result: ecological niche map for African animal

Biodiversity Virtual e-Laboratory
Showcase study 2: re-use a workflow

7

� Analysis of neuro-images to diagnose the Alzheimer disease

� Several different libraries used:
� Matlab, ITK, etc

� LONI Pipeline used to orchestrate the complex analysis
workflow

� The analysis chain is quite long in terms of number of
different programs to be executed
� usually more then 10 algorithms are applied to a single image

� The whole analysis chain on a single image takes about 200
CPU/hours
� Usually a research group need to process thousands of images

� The LONI Pipeline is able to exploit WSDL services 8

Medical Use case and LONI Pipeline

General overview of the framework
• FrontEnd:

• REST-FUL and Soap Web service

• Apache TomCat

• DBMS: MySql 5

• Framework Jersey

• Framework Java EE 6.0

• SDK Asynchronous operations

• It is able to deal with bunch operations (Submit&Check
Status)

• Username&Password based security

• BACKEND written in JAVA (Multithread)

• Reads DB, submits and executes jobs

• At the moment we support:

• PBS, EGI/IGI grid infrastructure, dedicated servers
9

Web service Logical Design

10

General overview of the framework
� Each call to the web service is intended to ask for an

execution of a well specified application:

� Only supported applications (and well known to the
service provider) could be executed

� Supporting a new application is usually few days of works
from the service provider point of view

� Most of the application only requires one or few input files

� The user can request a run, by choosing the name of
the application and the name (and location) of the
input files

� You can also use a external file available through http,
ftp, etc.

� When needed the user could change also parameters used
in the command line

� The output of the runs at the end will be available (also to
other services) via http link

11

� Each application is described by:
� A bash script that prepare the

environment and run the real
application
�Hidden to the final user

� A set parameters
� Input location and file name
�Arguments for the executable

� Returns:
� Status
� Output URL

Describing the application

12

� Requesting execution of application for:

� Huge challenges on distributed computing
infrastructure (EGI)

� >1000 jobs && >1 month of CPU

� Response time: few days

� Hundreds of parallel executions on a local farm
(INFN-Bari--ReCaS)

� Few hundreds-thousand of jobs

� Response time: from few minutes to few hours

� Single fast execution per real time analysis

� ~10 concurrent execution

� Response time: ~ 5-10 seconds

� Each of the application/service is already configured to
run on a specific infrastructure

Features Supported

13

Describing the Job Submission Tool

14

� Job Submission Tool

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

� Job: it is the process executed on the grid worker nodes
that takes care of a specific task execution

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

� Job: it is the process executed on the grid worker nodes
that takes care of a specific task execution

� A single job can take care of more than one task or more
jobs may be necessary to execute one task (due for
example to failures that may require a job resubmission)

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

� Job: it is the process executed on the grid worker nodes
that takes care of a specific task execution

� A single job can take care of more than one task or more
jobs may be necessary to execute one task (due for
example to failures that may require a job resubmission)

� On a UI, a daemon is always running to check the status
of TaskListDB: it submits new jobs as soon as new task
appears

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

� Job: it is the process executed on the grid worker nodes
that takes care of a specific task execution

� A single job can take care of more than one task or more
jobs may be necessary to execute one task (due for
example to failures that may require a job resubmission)

� On a UI, a daemon is always running to check the status
of TaskListDB: it submits new jobs as soon as new task
appears

� The same job is submitted every time

Describing the Job Submission Tool

14

� Job Submission Tool
� Each requested application run is inserted into a RDBMS

(the TaskListDB).
� The TaskListDB is then used to control the assignment of

tasks to the jobs and to monitor the jobs execution
� Tasks: they are the independent activities that need to be

executed in order to complete the challenge related to an
application/workflow

� Job: it is the process executed on the grid worker nodes
that takes care of a specific task execution

� A single job can take care of more than one task or more
jobs may be necessary to execute one task (due for
example to failures that may require a job resubmission)

� On a UI, a daemon is always running to check the status
of TaskListDB: it submits new jobs as soon as new task
appears

� The same job is submitted every time
� The differences is only related to the task they have to

complete that is assigned only when it got executed

Describing the Job Submission Tool

14

Job Submission Tool Features

15

� JST acts on top of the Grid middleware so that users are not
required a deep knowledge of the grid technicalities:
� It actually submits jobs through WMS, retrieves the jobs

outputs and monitors their status

Job Submission Tool Features

15

� JST acts on top of the Grid middleware so that users are not
required a deep knowledge of the grid technicalities:
� It actually submits jobs through WMS, retrieves the jobs

outputs and monitors their status

� When the jobs reach the WN they just request to the
TaskListDB if there is any task to execute (pull mode). If no,
they just exit.

� JST tries to use all the computing resources available on the
grid (no a priori black or white site lists are necessary). If the
environment/configuration found on the WN is not adequate,
the job exits.

� Since the tasks are independent and they can be resubmitted
if needed, a quite good reliability can be reached and JST can
work successfully even if some failure occurs on Grid services
� More than one WMS is used for jobs submission
� More than one SE used for the stage-out and stage-in

phase

Job Submission Tool Features

15

� Requests from the TaskListDB a tasks to be
executed

� Retrieves the application executable (it has to
be available with one protocol among: https,
http, gridftp, ftp, xrootd)

� Executes the application code

� Stores the output in one of the configured
SEs
� With one of the configured protocols

� Checks the exit status of the executable and
of the stage-out procedure

� Updates the task status into TaskListDB

Job Submission Tool Wrapper

16

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The user creates the
tasks using the
Taverna GUI

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The user creates the
tasks using the
Taverna GUI

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A daemon running on
the UI check if any
Free task has been
created

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A daemon running on
the UI check if any
Free task has been
created

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The UI daemon
submit jobs on the
Grid

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

More than one WMS
used to perform the
submission

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The wrapper
• requests the TaskListDB

for a task to execute
• updates the task status
• logs the monitoring

information

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Output registered
on a SE chosen in a
list of SEs in base
to their availability

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A UI daemon retrieves
output from the SEs

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A UI daemon retrieves
output from the SEs

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A UI daemon retrieves
output from the SEs

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

A UI daemon retrieves
output from the SEs

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The daemon send the
output to a web server

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

The daemon send the
output to a web server

Web
Service

Frontend

JST Detailed schema

Grid
Farms

Grid
Farms

Grid
Farms

17

� Quite often the size of the input files is O(GB) so it means is

quite difficult to upload it using the standard web service

interface

� Typical Bioinformatics users do not know how to register

input files into grid storage elements and catalogues

� We need to provide an easy interface to manage large files

and then transfer it to the grid in a transparent way

� This transfers service should:

� Have at least one client in every platform (Windows/MacOS/
Linux)

� Provide authentication at least with username/password

� Provide high performance on high-latency networks

� Reduce the file transfers between services and users desktop
to the minimum (temporary files should be already available to

Input files: problems

18

Screenshots:
WebDav DataManagement Service

19

v You can access
those files using
web browser:

² You can easily
share your data
with others
colleagues

² Or use the
input/output
within other
(web) services

Screenshots:
WebDav DataManagement Service

20

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JSTJob

Job

Job

Job

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JSTJob

Job

Job

Job

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

Data-Management and Bioinformatics applications

Storage
Element

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm

SE

WNWNWN

EGI Farm
SE

WNWNWN

EGI Farm

JST

21

� Transferring files and directory:
� user friendly
� good performance
� Well established protocol (WebDav)

� Submitting and monitoring the status of
one or several runs with simple Soap/
REST APIs
� Multiple submission (up to thousands tasks)

with a single web services call
� Monitoring the whole run with a single WS call
� High reliability of the job execution with re-

submission in case of failures
� also stage-in/out operation is checked to deal

with job failures

Features Supported

22

Rest Web service example
Insert	
 Jobs:
h"p://localhost:8080/RestService/services/QueryJob/InsertJobs?
NAME={blast}&arguments={h"p://webtest.ba.infn.it/vicario/
FinalFusariumDB_2.nex	
 ArgOne;	
 h"p://webtest.ba.infn.it/vicario/
FinalFusariumDB_1.nex	
 	
 ArgTwo;}

Select	
 Jobs:	

h"p://localhost:8080/RestService/
services/QueryJob/SelectJobs?
FLAG={20b3cbf8-­‐6805-­‐47b4-­‐
ad7c-­‐7b40bc706741} 23

http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://www.google.it/
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://webtest.ba.infn.it/vicario/FinalFusariumDB_2.nex
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B
http://localhost:8080/RestService/services/QueryJob/SelectJobs?FLAG=%257B

Soap Web service example
� wsdlpull 'http://localhost:8080/

INFN.Grid.SoapFrontEnd/
SoapServiceMethodsPort?wsdl' InsertJobs
admin admin test_loni ’MatLabRUN1 input_test
12; MatLabRUN2 input_test2 24'
pasq.notra@ba.infn.it

� wsdlpull 'http://localhost:8080/
INFN.Grid.SoapFrontEnd/
SoapServiceMethodsPort?wsdl' SelectJobs
admin admin 20b3cbf8-6805-47b4-
ad7c-7b40bc706741 24

Upload	
 the	
 user’s	
 inputs

Run	
 MrBayes:	
 a	
 MPI	
 applica`on	

that	
 could	
 run	
 for	
 several	
 hours

Pass	
 the	
 output	
 to	
 the	
 next	
 services	

25

Check	
 the	
 convergence	
 of	
 the	

model

Retrieving	
 the	
 output	
 and	

parsing	
 the	
 XML	

calculate	
 the	
 consensus	
 tree	
 of	
 th
e	
 posterior	
 distribu`on	
 of	
 MrBaye

s	
 output

Graphical	
 view	
 of	
 the	
 tree

� Grid distributed computing infrastructures (EGI
Production Grid)
� ~ 200’000 Cores, Hundreds of distributed sites
� ~ 20PB
� There sites that offers a good support to biomed VO
� Very	
 useful	
 for	
 huge	
 number	
 of	
 independent	
 tasks

� Local batch INFN-Bari (ReCaS) farm
� ~4000 Cores
� 1.6PB of storage
� Supporting several VOs
� 10% of the share are dedicated to opportunistic VOs (like

bioinformatics)
� From	
 tens	
 to	
 hundreds	
 of	
 concurrent	
 execu9on,	
 very	
 good	
 support	
 for	
 MPI	

applica9on

� Dedicated servers
� Big servers: 24Cores, 48GB of RAM (will be higher in the future)
� Specialized servers: 2 Tesla C2070 GPUs
� Thread	
 based	
 parallel	
 applica9ons,	
 GPU	
 enabled	
 applica9ons,	
 short	
 and	

high	
 priority	
 tasks

Description of the resources

26

� Stress test already passed:
� 100’000 insert in a loop… no memory leak or similar

problems

� Up to 100 concurrent clients without problems

� 1000 tasks insert in a single REST call

� ~1M of tasks managed from DB+backend

� A lot of experience in porting Bioinformatics application
over EGI distributed computing infrastructure:
� Hmmer, MrBayes, Blast, PAML, MUSCLE, EMBOSS,

Biopython, AmpliconNoise, ABCtool, Bowtie, BayeSSC,
GeoKS, hyphy, raxmlHPC, phylocom, consensus_xml,
Matlab, etc…

� 25 different services already provided to users
communities

Test & Results

27

� We have a high scalable and solid service that
could be used to supports execution of
applications over different computing
infrastructure

� We have also a high performance data transfer
and sharing service

� We publish both services and WorkFlows on
BioCatalogue and MyExperiments as soon as
they are available

� It will be quite easy to add new application in
the near future

� We will soon add OpenID authentication, and
� as soon as it will be required it would be easy

to add GSI or Shibboleth security on the
front-end

Conclusions & To-do

28

http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/

� Giacinto Donvito (INFN-ReCaS)

� Pasquale Notarangelo (INFN)

� Saverio Vicario (CNR)

� Bachir Balech (CNR)

People involved in the development

29

BioVeL is funded by the European Commission
7th Framework Programme (FP7).
It is part of its e-Infrastructures activity.

Biodiversity Virtual e-Laboratory

Under FP7, the e-Infrastructures activity is part of the Research Infrastructures programme,
funded under the FP7 'Capacities' Specific Programme. It focuses on the further development
and evolution of the high-capacity and high-performance communication network (GÉANT),
distributed computing infrastructures (grids and clouds), supercomputer infrastructures,
simulation software, scientific data infrastructures, e-Science services as well as on the adoption
of e-Infrastructures by user communities.

BioVeL is free and available via internet.

www.biovel.eu, contact Alex Hardisty: HardistyAR@cardiff.ac.uk 30

http://www.biovel.eu
http://www.biovel.eu

