

self-service cloud of virtual machines

Antonio Cisternino, Maurizio Davini, Marco Mura - ITC Center Università di Pisa

Introduction

- In 2010 Patterson: Cloud is a business model rather than a technology
- Cloud definition is still «cloudy» and is declined in several flavors (laaS, PaaS, SaaS)
- Goal: use a computing infrastructure without knowing where and how much resources are used
- Keywords: flexibility (server), elasticity (client)
- ▶ The plug problem... What is the right abstraction between the cloud and users?
- So far VMs (and x86) look the better interface for general purpose cloud services

Architecture

- Cluster of Hyper-V manager
- Implemented in F# and WMI
- Operations:
 - Create/Destroy VM
 - Live and off line migration
 - Diff disk imaging
- Self service Web
- Expert system for VM orchestration and policy

Octopus

Hyper-F

WMI Hyper-V calls

Shared Storage

DHCP Networking DNS

Model

Creating a cluster of VMs

Checking VMs from mobile

Rule based VM management

- Using a rule based approach to resource management
- Example: moving VMs to optimize power consumption (packing VMs on HW nodes)
- Use of CLIPS expert system with the (great) .NET wrapper
- Octopus runtime asserts facts about the cloud (users, VMs,VM status, counter etc)
- Rule based systems allow to express efficiently arbitrary complex policies

CLIPS environment

- ▶ This is still a prototype!
- Rule example

```
(require "Octopus")
(octopus-create-vm "Pippo" "LinuxImg" 2 2048 1024)
(defrule suspend-when-idle (octopus-vm-idle ?x) =>
 (if (octopus-suspend-vm ?x) then
   (printout t?x " suspended") else
   (printout t?x " failed to suspend")))
(assert (octopus-vm-idle "Pippo"))
(run)
```


The experiment

- HW: Acer AR585, 2U, 4cpu (8 cores), 32Gb RAM, 8NUMA (Windows)
- ▶ SW: Fluent 12.1, Win2008 R2 e Hyper-V
- ▶ Test: Fluent test con ~ I mln cells
- ▶ Run (using MPI from HP and MS):
 - ▶ 16 processes in shared memory
 - ▶ 16 processes without shared memory
 - Virtual Cluster of 16 nodes (1 core, 1584Mb) and 1 head node
 (2 cores, 2048Mb) and MS HPC v3 b2

An interesting result

					Hardwar	e					
								tal Avg	Total	Total	
		hpmpi			msmpi Yirtual clus	ster		er (s)	StdDev	#exp	
D .				11	y ii cyai ciu.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	Tota	Avg. Tota	al Total	
Precis		npi	<u>-</u> 2 Vii	rtual	msmpi speedalb7	(Hw/Vi	rtual) .	Iter	StdE) #exp	
Predeleda Predeleda Predeleda	e Ave	HPMRksh	ared 77	33 h	p' Avg. 9ter PMPI no	3 I HPN	1P _{0.008}	/ _{ex} J/,80 Ms/4F	Z, 1 7		2
ingile@hrd	mem	1117565	1 259,8	78 40	10 1/0:337	6%12,35		6 \$7,7 9	118,33%		
oubliegle		12,17	13,108	2%9		4% 1,26			39,45%	2 2 # 33	3,4
no		11,57	0,37	10		·		11,57	0,3	37 IO	
Shrd	mem	12,84	1,06	9	13,27	1,26	5	12,99	1,1	1 14	

Virtual execution is faster than native on the same HW!!!

Conclusions

- VMs and x86 are a great way for having a standard API between software and cloud for general purpose computing
- Lease renew is an efficient way for stimulating users at VM recycling
- It is possible to let users request their own resources
- Rule based expert systems are a promising way to express complex policies for cloud management.

