GARR

The Italian Academic & Research Network

Bandwidth on Demand

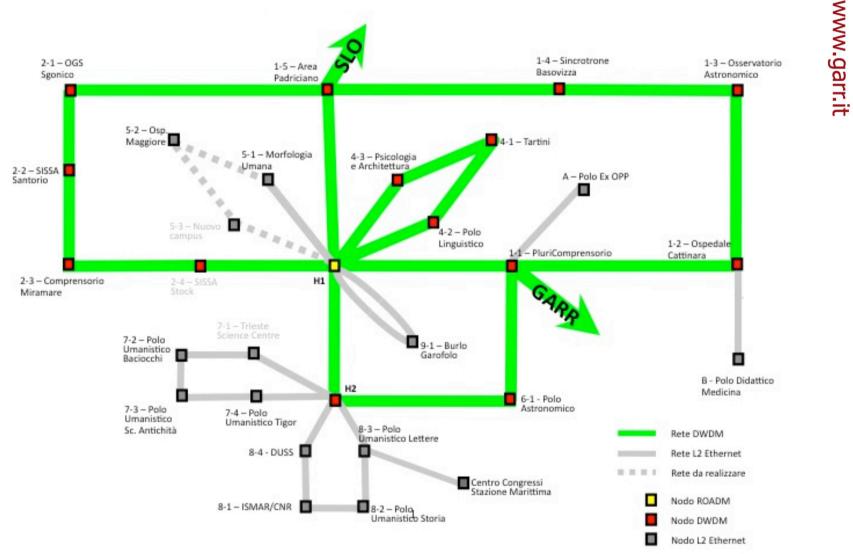
Realizzazione di un testbed per l'allocazione dinamica di canali e2e su rete metropolitana LightNet

Gianluca Russo

II Borsisti Day GARR, Roma, 23 febbraio 2011

Introduzione al servizio

- Un servizio di allocazione dinamica della banda prevede la creazione on-demand di circuiti virtuali e2e con prenotazione delle risorse
- Il servizio è fruibile per mezzo di una CLI o una GUI, accessibili attraverso un modulo client locale (sulla macchina dell' utente) o remoto (su un server dedicato)


Requisiti del servizio

- Piena operatività in scenari multi-dominio
- Instaurazione di circuiti "realmente end-to-end"
- Operatività su infrastrutture tecnologicamente eterogenee
- Trasparenza e robustezza
- Semplicità di utilizzo

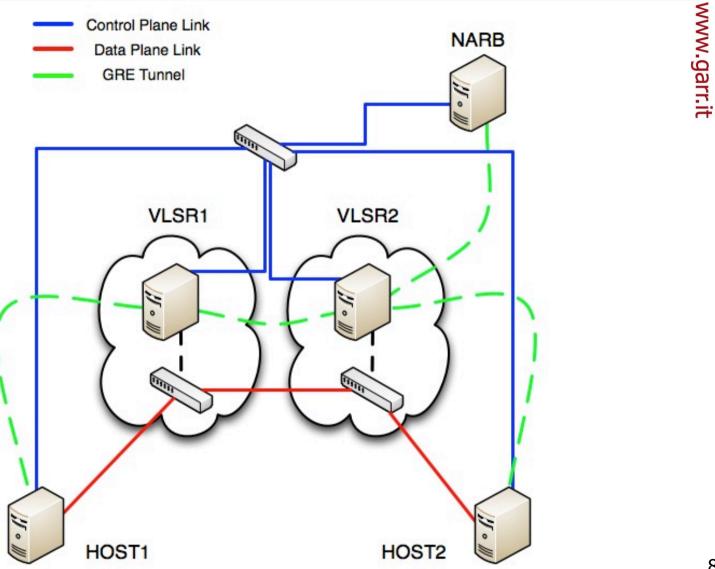
Allocazione dinamica su LightNet

La scelta del middleware: DRAGON

- Volontà di adottare un control plane standardizzato (GMPLS) anziché affidarsi ad un approccio a technology proxy
- Necessità di implementare un middleware attivamente sviluppato
- Scelta di una soluzione funzionante su infrastrutture eterogenee
- Possibilità di ottenere supporto (dal produttore degli apparati ottici e dal team di sviluppo)

Architettura di DRAGON

- Client System Agent: accessibile via telnet, permette all' utente di interfacciarsi con il sistema e di creare, monitorare e distruggere LSP
- Virtual Label Switched Router: un controller GMPLS esterno per apparati non nativamente compatibili. Interpreta e gestisce le richieste del lato control plane e configura adeguatamente l'hardware via SNMP.
- Network Aware Resource Broker: controller intra ed inter-domain, conosce la topologia locale e la propaga all' esterno. Dispone di un Path Computing Element integrato.


Funzionamento in ambito monodominio

- Ciascun nodo mantiene attiva un' istanza OSPF-TE ed RSVP-TE
- OSPF-TE è utilizzato dai nodi per l'advertising della topologia locale e per propagare le informazioni di TE relative alle interfacce sui link di data plane (indirizzi di TE, banda disponibile e allocabile)
- RSVP-TE viene utilizzato da GMPLS per la segnalazione, la creazione e la distruzione dei G-LSP

Il testbed monodominio

LSP setup

```
vlsr2> ena
vlsr1> ena
                                                     vlsr2# 01-Jan-2000 02:29:45 %LINK-I-Up: Vlan 101
vlsr1# 01-Jan-2000 02:29:54 %LINK-I-Up: Vlan 101
gian@dragon-host2:~$ ping 192.168.100.1
PING 192.168.100.1 (192.168.100.1) 56(84) bytes of data.
From 192.168.100.2 icmp_seq=2 Destination Host Unreachable
From 192.168.100.2 icmp_seq=3 Destination Host Unreachable
From 192.168.100.2 icmp_seq=4 Destination Host Unreachable
64 bytes from 192.168.100.1: icmp_seq=5 ttl=64 time=2004 ms
64 bytes from 192.168.100.1: icmp_seq=6 ttl=64 time=1004 ms
64 bytes from 192.168.100.1: icmp_seq=7 ttl=64 time=4.30 ms
64 bytes from 192.168.100.1: icmp_seq=8 ttl=64 time=0.167 ms
64 bytes from 192.168.100.1: icmp_seq=9 ttl=64 time=0.169 ms
64 bytes from 192.168.100.1: icmp_seq=10 ttl=64 time=0.169 ms
64 bytes from 192.168.100.1: icmp_seq=11 ttl=64 time=0.161 ms
64 bytes from 192.168.100.1: icmp_seq=12 ttl=64 time=0.143 ms
64 bytes from 192.168.100.1: icmp_seq=13 ttl=64 time=0.168 ms
64 bytes from 192.168.100.1: icmp_seq=14 ttl=64 time=0.165 ms
۸C
--- 192.168.100.1 ping statistics ---
14 packets transmitted, 10 received, +3 errors, 28% packet loss, time 13007ms
rtt min/avg/max/mdev = 0.143/301.402/2004.286/641.665 ms, pipe 3
gian@dragon-host2:~$ □
```


LSP teardown

```
www.garr.it
                                                      vlsr2> ena
vlsr1> ena
                                                      vlsr2# 01-Jan-2000 02:29:45 %LINK-I-Up: Vlan 101
vlsr1# 01-Jan-2000 02:29:54 %LINK-I-Up: Vlan 101
                                                      vlsr2>
vlsr1>
                                                      vlsr2>
vlsr1>
                                                      vlsr2>
vlsr1>
                                                      vlsr2>
vlsr1>
                                                      vlsr2> ena
vlsr1> ena
                                                      vlsr2# 01-Jan-2000 03:20:01 %LINK-W-Down: Vlan 101
vlsr1# 01-Jan-2000 03:20:10 %LINK-W-Down: Vlan 101
```

```
dragon-host1> sho lsp

**LSP status summary**

Name Status Dir Source (IP/LSP ID) Destination (IP/Tunnel ID)

test In service <=> 10.77.77.1 10.77.77.65
123 321

dragon-host1> delete lsp test
dragon-host1> |
```


E se succede qualcosa?

- Il framework GMPLS utilizza il Link Management Protocol (RFC4204) per monitorare i link di control e data plane dell' infrastruttura GMPLS
- DRAGON non supporta attualmente LMP: come reagisce ad un' interruzione di connettività?

Simulazione di guasto su un nodo

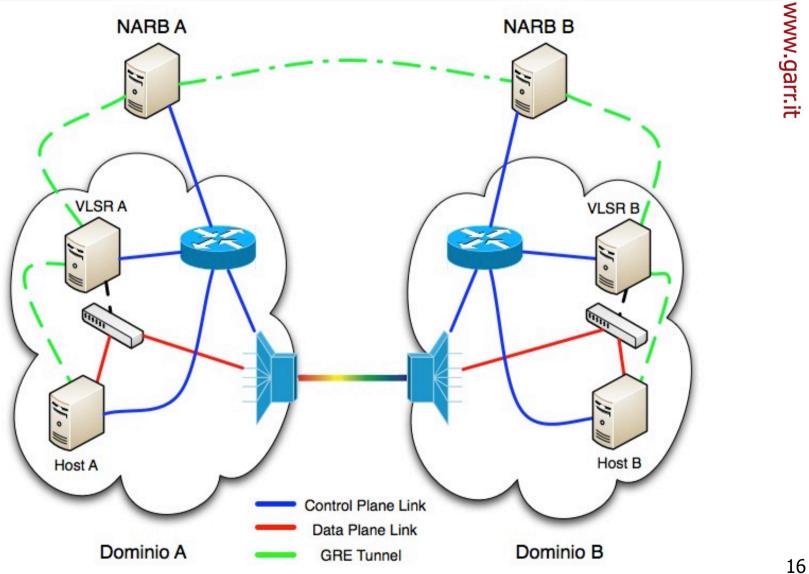
- Su link di data plane: in assenza di LMP, non c'è alcuna entità preposta al monitoring del collegamento ed all'eventuale ripristino dell'LSP. Sono possibili fenomeni di black holing del traffico e di spreco di risorse allocate
- Su link di control plane: le adiacenze OSPF, allo scadere del keepalive, cadono. Il sistema si accorge dell' accaduto e rimedia rilasciando le risorse allocate

E se non ho il CSA? Il local-ID

- Non è detto che l'utente possa (o desideri) installare il client sulla sua macchina
- Il local-ID è un costrutto non standard che permette ad un VLSR di agire da "proxy" per un nodo non raggiungibile da RSVP-TE.
- Permette di terminare l'LSP su una o più porte del VLSR anziché sull'end-node privo di CSA. La creazione del circuito viene richiesta in telnet attraverso la CLI del VLSR.

Esempio: LSP port-to-port

```
100
        [untagged group] 9(0/0/9)
vlsr1> edit lsp testID
vlsr1(edit-lsp-testID)# set source ip-address 10.77.77.2 group 100 destination i
p-address 10.77.77.66 group 100
vlsr1(edit-lsp-testID)# set bandwidth eth100M swcap l2sc encoding ethernet apid
ethernet
vlsr1(edit-lsp-testID)# exit
vlsr1> sho lsp testID
Src 10.77.77.2/100, dest 10.77.77.66/100
Generic TSPEC R=eth100M, B=eth100M, P=eth100M, m=100, M=1500
Encoding ethernet, Switching 12sc, G-Pid ethernet
Ingress Local ID Type: untagged group, Value: 100
Egress Local ID Type: untagged group, Value: 100.
No EZE LSP VLAN Tag configured.
Status: Edit
vlsr1> comm lsp testID
vlsr1> sho lsp
                         **LSP status summary**
                      Dir Source (IP/LSP ID) Destination (IP/Tunnel ID)
Name
           Status
                                               10.77.77.66
testID In service <=> 10.77.77.2
                            100
                                                100
vlsr1>
```



Funzionamento in ambito multidominio

- All' interno di ogni singolo dominio, tutto rimane invariato. OSPF-TE mantiene aggiornata la topologia e le relative informazioni di TE
- Sul NARB di ciascun dominio viene configurata staticamente la topologia da propagare ai broker dei dominii adiacenti
- I NARB dei due domini coinvolti nella creazione di un LSP si scambiano le topologie ed il Path Computing Element del broker richiedente calcola il path per il circuito
- Come prima, RSVP-TE è utilizzato per allocare le risorse, creare e distruggere LSP

Il testbed multidominio

La fase zero: two-steps provisioning

- Attraverso l' NMS ADVA (CP GMPLS-based)
 viene creato il servizio edge-to-edge
- Utilizzando il CP GMPLS-standard di DRAGON, si stabilisce l' LSP end-to-end
- Su LightNet, di fatto, il pre-provisioning delle risorse edge-to-edge per il sistema di allocazione dinamica è intrinsecamente attivo ed è trasparente all' utente DRAGON

Piano di lavoro per il rinnovo: fase 1

- Raggiungimento di una piena integrazione fra il middleware e l'infrastruttura ottica di LightNet
- Sviluppo di un interprete GMPLS-standardizzato per FSP3000R7 e/o editing del codice sorgente di DRAGON
- Installazione del pilota presso gli enti interessati
- Produzione di manualistica d'uso e formazione dell'utenza

Piano di lavoro per il rinnovo: fase 2

- Integrazione di un' interfaccia grafica per una semplice creazione dei circuiti (API NARB)
- Implementazione di soluzioni atte a mitigare problematiche strutturali (implementazione keepalive data plane, timeout reservation, miglioramenti AAA e capacità di prenotazione anticipata)
- Indagine fra le utenze per l'integrazione di ulteriori funzionalità necessarie

Piano di lavoro per il rinnovo: fase 3

 Raggiunti gli obiettivi delle fasi 1 e 2, e dunque ottenuto un servizio ragionevolmente affidabile ed accessibile, possibilità di estensione al sistema LightNet - GARR

Grazie per l'attenzione!

grusso@ictp.it

