

Classificazione e Predizione del traffico di rete generato dalle applicazioni mobili per l'interazione sociale e lo smart-working

GIORNATA DI INCONTRO BORSE DI STUDIO GARR "ORIO CARLINI" ROMA

Idio Guarino, PhD Student @UniNa

Tutor: Prof. Antonio Pescapè, Professore Ordinario @ DIETI-UNINA

Gli effetti del lockdown

"il lockdown ha causato una crescita improvvisa dei volumi di traffico, perlopiù legata all'impiego di applicazioni per l'interazione sociale e lo Smart-working (ISSW)"

Gli effetti del lockdown

Feb \rightarrow Apr 2020, Mondo [1]

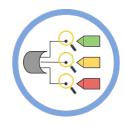
• +40% - traffico residenziale (+121% Upstream, +23% Downstream)

 $Mar \rightarrow Giu 2020, Europa [2]$

- +200% traffico residenziale applicazioni ISSW
- -55% traffico delle reti "educational"

Mar → Apr 2020, Italia - PoliTo e-teaching [3]

- fino a 1.5 Gbit/s
- > 600 classi virtuali giornaliere
- > 16k studenti


^{1.} Sandvine, The Global Internet Phenomena Report COVID-19 Spotlight, 2020

^{2.} A. Feldmann et al., The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traffic, IMC 2020

^{3.} T. Favale et al., Campus traffic and e-Learning during COVID-19 pandemic, Elsevier Computer Networks, 2020

Classificazione e Predizione del traffico

Traffic Classification (TC): Cosa sta attraversando la mia rete?

Traffic Prediction (TP): Come evolveranno le caratteristiche del traffico?

Classificazione e Predizione del traffico

Scenari Applicativi

Problemi

Ambiguità dei servizi di terze parti Eterogeneità del Traffico (utente, dispositivo, OS) Dinamicità ed evoluzione continua

Crittografia NAT Dynamic Port Mapping

Outline

Dataset

Costruzione del dataset

Selezione delle **9 App** più popolari ed utilizzate:

Discord

GotoMeeting

Meet

Messenger Skype

Slack

Teams

Webex

7₀₀m

- 3 tipologie di Attività di interesse:
 - Audio-call (ACall): chiamata con solo audio tra 2 partecipanti
 - Chat (Chat): 2 partecipanti che si scambiano messaggi testuali e/o contenuti multimediali (es. immagini, GIF, ecc.)
 - Video-call (**VCall**): ≥2 partecipanti che possono trasmettere sia video che audio. Include eventi dal vivo come videochiamate, videoconferenze e webinar

Collezionamento del Traffico

- Collezionamento su Rete GARR (laboratorio ARCLAB dell'Università degli Studi di Napoli Federico II)
- Architettura MIRAGE[4]: etichettamento affidabile biflusso-(App, Attività)
- Partecipazione volontaria di ricercatori e più di 150 studenti
- **più di 300 ore** di dati di traffico **20 GB** di volume

MIRAGE Project

http://traffic.comics.unina.it/mirage/

Privacy

Utilizzo di dispositivi e profili utente ad-hoc

Ampliamento del Dataset

Incremento del Volume

Messenger

Slack

Analisi sulla **robustezza** della metodologia

Outline

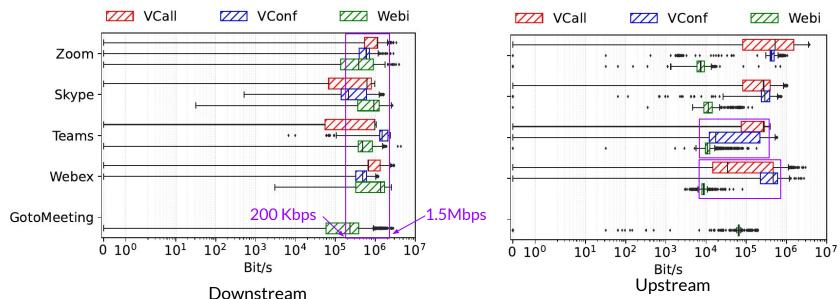
- Caratterizzazione a granularità differenti (es. traccia, biflusso)
- Modellazione del traffico via Markov Chains

Caratterizzazione del Traffico

- Caratterizzazione basata su 6 metriche aggregate:
 - Upstream/Downstream bit-rate
 - Upstream/Downstream packet-rate
 - Downstream volume ratio
 - Downstream packet ratio
- \triangleright Le metriche sono calcolate utilizzando **finestre temporali** (non sovrapposte) di durata \triangle .
- Per una data traccia, la *i*-esima finestra considera tutti i pacchetti il cui tempo di arrivo t₁:

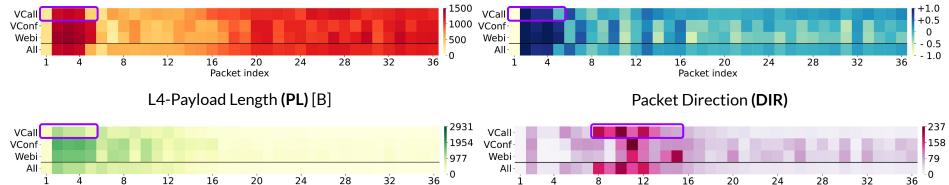
$$t_k \in [t_0 + (i-1)\Delta, t_0 + i\Delta), \; i \in \{1, 2, \cdots, \lceil rac{D}{\Delta}
ceil \}$$

dove \mathbf{t}_0 e \mathbf{D} sono rispettivamente il tempo di inizio e la durata della cattura.

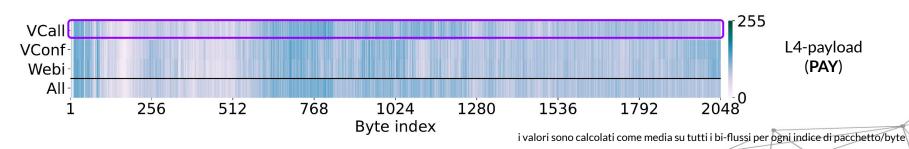

I risultati mostrati sono ottenuti con $\Delta = 5$ s (altri valori di $\Delta = 10, 30, 60$ s sono stati testati senza mostrare differenze significative.)

Bit-rate (\triangle =5 s)

Le box riportano 1Q e 3Q, mentre i baffi 1Q-1.5IQR and 3Q+1.5IQR (IQR=3Q-1Q)



Analisi del **comportamento iniziale** di



Packet index

Inter-Arrival Time (IAT) [ms]

Packet index

I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico and A. Pescapé, "Classification of Communication and Collaboration Apps via Advanced Deep-Learning Approaches", 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2021, pp. 1-6.

Feature Innovative

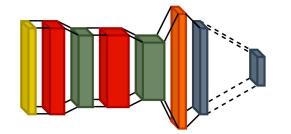
- Definizione di feature innovative adatte a discriminare in particolare le attività svolte dall'utente
- Analisi delle relazioni temporali tra i diversi biflussi

Outline

GIORNATA DI INCONTRO BORSE DI STUDIO GARR "ORIO CARLINI" BORSISTI DAY 2022

Traffico

Classificazione delle **Applicazioni** e delle **Attività** svolte dall'utente



Metodologia

mono-modale

1D-CNN


[Wang et al., ISI, 2017]

Input (per ciascun biflusso):

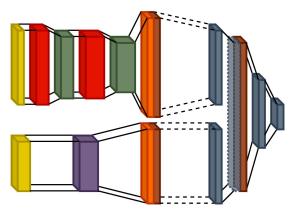
Primi N_b byte di **PAY**

Networks (CAMAD), 2021, pp. 1-6.

mono-modale

2D-CNN+LSTM (Hybrid)

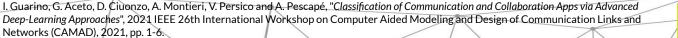
[Lopez et al, IEEE Access, 2017]


Input (per i primi N_n pacchetti di ciascun biflusso):

PL+IAT+DIK+TCPWIN

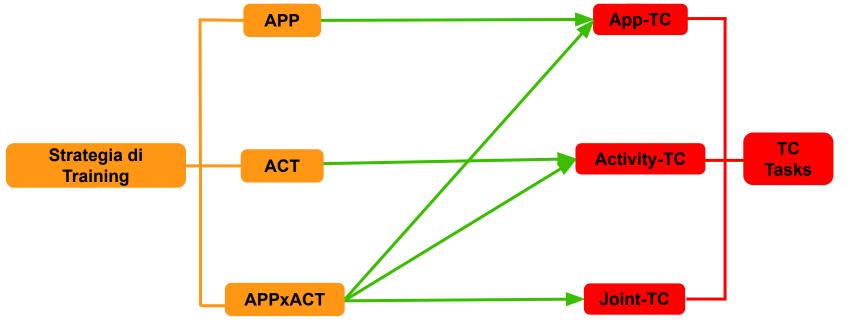
Training: (loss=categorical cross-entropy, epochs=90*, batch size=50, optimizer=Adam, early-stopping=True)

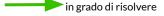
*Mimetic: 2-phase training (pre-training=25 epochs per-modality, fine-tuning=40 epochs)


Multimodale

Mimetic [Aceto et al., ComNet, 2019]

Input (per ciascun biflusso):


- I Modalità = 1D-CNN Input
- II Modalità= Hybrid Input



Classificazione del Traffico relativo ad App e Attività

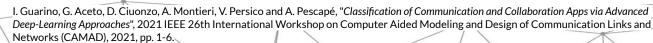
Risultati Sperimentali

GotoMeeting

Skype

Teams

Webex


Zoom

Classifier	N _b	N _p	Strategy	Joint-TC F-Measure [%]	App-TC F-Measure [%]	Act-TC F-Measure [%]	#TP[k]
1D-CNN	576	-	APPxACT	49.74	96.98	66.62	4261
			APP		97.89		4253
			ACT			65.89	4251
Hybrid	-	12	APPxACT	49.99	95.08	63.38	222
			АРР		94.71		222
			ACT			62.50	221
MIMETIC	576	12	APPxACT	52.71	97.86	67.48	942
			APP		98.30		937
			ACT			66.87	936

Attività:

- Video-Call (VCall)
- Video-Conference (VConf)
- Webinar (Webi)

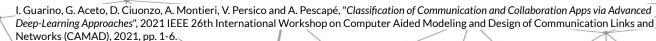
I risultati sono riportati come media ottenuta su 10



Risultati Sperimentali

Classifier	N _b	N _p	Strategy	Joint-TC	App-TC	Act-TC	#TP[k]
				F-Measure [%]	F-Measure [%]	F-Measure [%]	
		-	APPxACT	49.74	96.98	66.62	4261
1D-CNN	576		APP		97.89		4253
			ACT			65.89	4251
	-	12	APPxACT	49.99	95.08	63.38	222
Hybrid			APP		94.71		222
			ACT			62.50	221
MIMETIC	576	12	APPxACT	52.71	97.86	67.48	942
			APP		98.30		937
			ACT			66.87	936

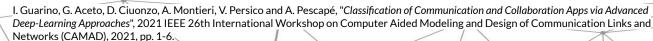
I risultati sono riportati come media ottenuta su 10 fold



Risultati Sperimentali

Classifier	N _b	N _p	Strategy	Joint-TC	App-TC	Act-TC	#TP[k]
				F-Measure [%]	F-Measure [%]	F-Measure [%]	
	576	-	APPxACT	49.74	96.98	66.62	4261
1D-CNN			APP		97.89		4253
			ACT			65.89	4251
Hybrid	-	12	APPxACT	49.99	95.08	63.38	222
			APP		94.71		222
			ACT			62.50	221
MIMETIC	576	12	APPxACT	52.71	97.86	67.48	942
			APP		98.30		937
			ACT			66.87	936

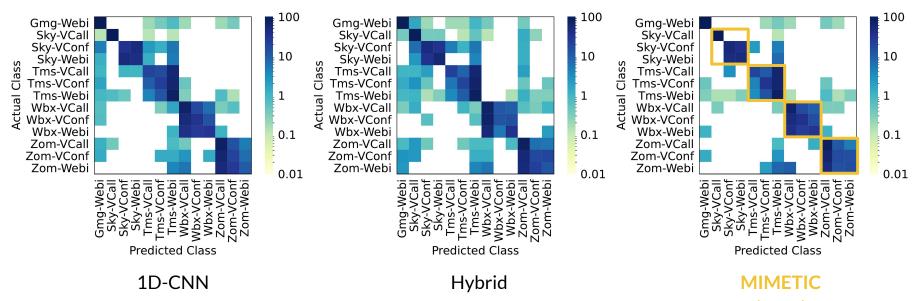
I risultati sono riportati come media ottenuta su 10 fold



Risultati Sperimentali

Classifier	N _b	N _p	Strategy	Joint-TC	App-TC	Act-TC	#TP[k]
				F-Measure [%]	F-Measure [%]	F-Measure [%]	
	576	-	APPxACT	49.74	96.98	66.62	4261
1D-CNN			APP		97.89		4253
			ACT			65.89	4251
Hybrid	-	12	APPxACT	49.99	95.08	63.38	222
			APP		94.71		222
			ACT			62.50	221
MIMETIC	576	576 12	APPxACT	52.71	97.86	67.48	942
			APP		98.30		937
			ACT			66.87	936

I risultati sono riportati come media ottenuta su 10 fold



Errore di Misclassificazione (Joint-TC)

I risultati sono riportati come media ottenuta su 10 fold

Miglioramento della Metodologia di Classificazione

- Inclusione delle nuove feature
- Utilizzo di livelli avanzati di Deep-Learning (es. embedding, attention ecc.)

- **Ri-progettazione** delle architetture (adattamento o estensione)
- Validazione delle architetture (trade-off prestazioni complessità)

Outline

Predizione delle **caratteristiche** associate al singolo **pacchetto**

Metodologia di Predizione

Input

Sequenza di PL, DIR e IAT Output

Input Matrix

Conv1D filters/strides=32/1 kernel size=5 activation=ReLu MaxPooling pool size/strides=3/3 filters/strides=64/1 kernel size=5

activation=ReLu MaxPooling pool_size/strides=3/3

Flatten

Dense units=128

activation=ReLu

Dense

units=1 activation=Sigmoid IAT

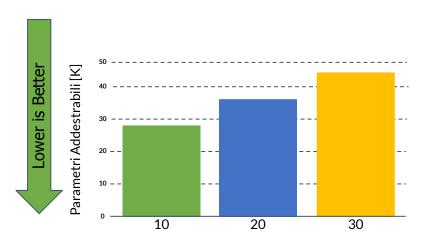
Dense

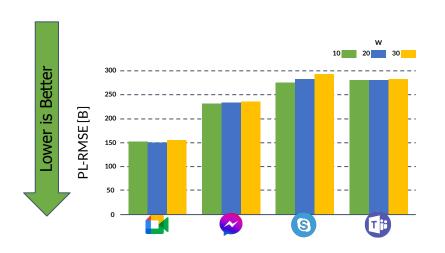
units=1

activation=Sigmoid

Dense

units=1


Valore predetto di PL, DIR e IAT per il pacchetto W+1


Training: (loss=mean squared error (PL/IAT) - binary crossentropy (DIR), epochs=100, batch size=50, optimizer=Adam, early-stopping=True)

Prestazioni al variare della finestra

Miglioramento della Metodologia di Predizione

• Progetto e Validazione di modelli in grado di **sfruttare** la **conoscenza** riguardo l'**attività** svolta dall'utente

 Progetto e Validazione di modelli a granularità differenti (es. combinazione App-Attività)

• Utilizzo di nuove feature e tecniche multimodali

Conclusioni e Sviluppi Futuri

Caratterizzazione e Modellazione del traffico

- Take home message: le attività associate alla medesima App non sono facilmente distinguibili
- ToDo: definizione di feature innovative

Classificazione del traffico associato ad App e Attività

- Take home message:
 - o **buone prestazioni** relative alla **classificazione delle App** (F-Measure ≥95%)
 - o la classificazione delle attività richiede ulteriori ricerche
- ToDo: miglioramento della metodologia di Classificazione (es. nuove feature, livelli avanzati di Deep Learning ecc.)

Conclusioni e Sviluppi Futuri

Predizione del traffico (a grana fine)

- Take home message: Le prestazioni variano a seconda dell'App considerata e della feature predetta
- ToDo: miglioramento della metodologia di Predizione (es. modelli a granularità differente, feature aggiuntive ecc.)

Ampliamento del Dataset

- Ampliamento del dataset (es. nuove App e Attività)
- Analisi sulla variazione del traffico e sulla robustezza dei modelli (concept drift)
- Rilascio pubblico

