AI-ASSISTED CONTROL OF OPTICAL DATA TRANSPORT

VITTORIO CURRI
DET – POLITECNICO DI TORINO
curri@polito.it
OPTICAL TRANSPARENT NETWORKS

Optical transponders:
Tx/Rx a LP at λ in B_{opt} operating at R_b over WDM grid using DP coherent optical technologies.

ROADMs:
Transparently routes any λ in B_{opt} from any input direction to any output direction according to the WDM grid.

Optical amplifiers:
Transparently amplify all λ in B_{opt}.

Optical fibers:
Transparently transport all λ in B_{opt}.
AGGREGATED AND DISAGGREGATED NETWORKS

Aggregated
- Fully aggregated: Entire transport network acts as a single managed system.

Disaggregated
- Fully disaggregated: Everything is a separate network element.
- Partly disaggregated: Transponder is one element, open line system (OLS) is second.
PARTIALLY DISAGGREGATED NETWORKS

Network controller

[Diagram showing network controller, OLS controller for Vendor A and Vendor B, Optical Line System, Disaggregated ROADM, and Open Transponders]

- E. Riccardi et al, An operator view on the introduction of white boxes into optical networks, JLT, 2018
- J. Kundrát et al, Opening up ROADMs: let us build a disaggregated open optical line system, JLT ,2019
- C. Xie et al, Open and disaggregated optical transport networks for data center interconnects, JOCN, 2020
- M. Birk et al, The OpenROADM initiative, JOCN, 2020
- H. Nishizawa et al, Open whitebox architecture for smart integration of optical networking and data center technology, JOCN, 2021
LIGTHPATH = AWGN NONLINEAR CHANNEL

- Each LP is a transparent point-to-point digital connection deploying DP coherent optical technologies
- The model for each transparent channel is AWGN nonlinear channel affected by
 - Gaussian ASE noise from amplifiers
 - Gaussian NLI from nonlinear crosstalk in fiber propagation
 - Filtering penalties

\[GSNR = \frac{P_{ch}}{P_{ASE} + P_{NLI}} \]
TRX MODEL

- TRX are typically flexible supporting multiple modulation formats
- The exploited FEC technology defines the maximum tolerable BER=BER_{max}
- From b2b characterization we obtain a full model for transceiver

![Diagram of TRX model and b2b characterization]

G. Borraccini et al, Using QoT-E for open line controlling and modulation format deployment: an experimental proof of concept, ECOC, 2020
\(\lambda_{UT} \)

\[
GSNR(\lambda_{UT}) = 10\log_{10} \left(\frac{1}{GSNR_{CH}} + \frac{1}{GSNR_{BC}} + \frac{1}{GSNR_{BD}} \right) + \left(FP_{H,dB} + FP_{C,dB} + FP_{B,dB} + FP_{V,dB} \right) \quad [\text{dB}]
\]

\[
\Delta \tau(\lambda_{UT}) = \Delta \tau_{CH} + \Delta \tau_{BC} + \Delta \tau_{BD} \quad [\text{ms}]
\]

\[
D_{acc}(\lambda_{UT}) = D_{acc,CH} + D_{acc,BC} + D_{acc,BD} \quad [\text{ps/nm}]
\]

V. Curri, Software-defined WDM optical transport in disaggregated open optical networks, ICTON, 2020
SOFTWARE DEFINED OPTICAL NETWORKING

HIERARCHICAL CONTROLLER

Optical circuits controller
- Centralized
- Global vision
- Find a transparent source-to-destination lightpath
- Set switching matrices
- Evaluate the LP QoT
- Set the modulation format in TRX

Optical power controllers
- Distributed
- Local on each OLS
- ROADM-ROADM vision
- Define the optimal power spectral density at fibers input
- Set amplifiers
USING MACHINE LEARNING IN THE DIGITAL TWIN
THE MSFT EST-BED

- 6 ROADMS
- Mixed fiber OLS 400 km up to 2000 km
- Multivendor/multirate/multiformat transceivers on full C-band
- 500+ tested cases

Microsoft SDN Controller

Datasheets

Network Description

GNPy

JSON models
- Topology
- HW
- Services

Estimated GSNR

Measured GSNR
GNPy QoT-E ACCURACY

Error = Measured GSNR – GNPy GSNR

- Inaccuracy mainly due to lack of exact knowledge of models for network elements: Machine learning may help
- Need for dataset!
• Direct ML model: the ML agent is trained in order to predict the I/O behavior given the ctrl
• Inverse ML model: the ML agent is trained to predict the needed ctrl to obtain a wanted I/O behavior
SELF- AND TRANSFER-LEARNING

• The ML agent is trained on the system under test and it is used on that specific systems

• The ML agent is trained on a system, then it is applied to a “sister system”
 • As “sister system” we consider a system we suppose is sharing with the training system most of the fundamental mechanism defining system performance
 • In optical networking, a sister system can be a network using the same HW on a different geographical topology
MACHINE-LEARNING BASED HW MODEL

- A ML model can replace a mathematical model of network elements
- Both inverse and direct ML models are useful to define the needed control (inverse) or the GSNR impairment (direct) of a component
- It can be useful for all NE for which a dataset can be easily obtained before installing the HW as for instance EDFA, switches
- It is more difficult to be applied when we need a dataset from the field
MACHINE LEARNING ASSISTED L-PCE

Both self- and cross-training options for training dataset
USING ML TO PREDICT THE OSNR COMPONENT OF THE GSNR: EXPERIMENTAL PoC
ENHANCING GNP\textsubscript{y} WITH MACHINE LEARNING

ML agent trained by ASE shaped noise do predict the OSNR

A. D'Amico et al, Enhancing Lightpath QoT Computation With Machine Learning in Partially Disaggregated Optical Networks, IEEE OJCS, 2021
APPLICATION SCENARIO

• Reliable QoT computation with different spectral load
• Optical amplifiers may strongly vary their performance with the spectral load given the control
• We suppose that amplifier are not reachable individually
• We suppose to be able to collect a data set with different input spectral loads obtained by ASE shaping
• We suppose to rely on optical channel monitors at the input and output OLS ROADMs
• We target to train a ML agent that replaces the evaluation of the OSNR component of QoT by GNPy
EXPERIMENTAL SET-UP AND DATASET

EXPERIMENTAL SETUP

- 8 span line
- Commercial amplifiers set to the optimal working point according to nominal values
- Waveshaper micking ROADM in generating shaped noise
- OSA at the receiver mimicking the OCM
- Two pluggable DCO to test the effectiveness on the method

DATASET

- Waveshaper to generate different spectral loads (96 ch in the C-band)
- 2520 spectral load configurations
- For each we collect
 - the amount ASE noise for the OFF channels
 - the overall gain for ON channels
PERFORMANCE OF TRAINED MACHINE LEARNING AGENT FOR OSNR PREDICTION

PREDICTIONS BY THE ML AGENT

PREDICTIONS USING NOMINAL G AND NF FOR EDFA MODEL

Signal level error [dB]

Noise level error [dB]
GSNR COMPUTATION: GNPy + ML AGENT

- The ML agent to predict the OSNR is used within GNPy to predict the overall GSNR
- Prediction results are compared to measurements obtained by testing two modulated channels on two channels: 7th and 73rd
- GSNR is obtained from pre FEC BER measurement converted to GSNR by b2b characterization
- Large set of spectral load is tested
NON DATA-DRIVEN COGNITIVE AND AUTONOMOUS OPTICAL POWER CONTROLLER
• The OPC sets the working point (e.g., gain and tilt) of OAs in the OLS
• In partially disaggregated network, independent OOPC for each ROADM-to-ROADM OLS
• The purpose is to minimize the propagation impairment on any LP propagating on the OLS
• The OPC is typically static and traffic agnostic
OPC BASED ON GNPy

- Feeding GNPy with OA models and possible data from monitors
- Possible training or probing phase
- GNPy computes the GSNR for every frequency varying the OA setting
- An optimizer engine drives the process to the optimal setting given the target
- Typical targets
 - Maximizing GSNR: $\text{Max}\{\langle \text{GSNR}(f) \rangle \}$
 - Flattening GSNR: $\text{Min}\{\langle |\text{GSNR}(f) - \langle \text{GSNR} \rangle |^2 \rangle \}$
QoT–E FOR OPC: INPUT DATA

- **OSNR(f) → OA model**
 - Gain(f) and NF(f) for every power level and gain and tilt setting
 - OA model
 - from accurate characterization (look-up table)
 - from trained ML agent

- **SNR_{NL}(f)**
 - Need accurate line description
 - Fiber type ($\alpha(f), D(f), A_{eff}$) and length
 - Connector losses

- **IMPOSSIBLE TO GET A DATASET FOR DATA DRIVEN APPROACH BECAUSE IT NEEDS DEPLOYED CHANNELS**
AUTONOMOUS LINE CHARACTERIZATION

- Suppose to rely on OCM and OTDR
- Need for a single probing action
- Evolutionary algorithm to classify each fiber span to obtain $\alpha(f)$, $D(f)$, A_{eff}, L_{span}
- NOTE: probing can be done after every fiber cut
EXPERIMENTAL PoC

- **Amplifiers** → commercial EDFAs
 - Lab characterized
- **Fibers** → 8 spans of roughly 80 km
 - Physical characteristics:
 - Attenuation profile
 - Chromatic dispersion
 - Kerr effect
 - Stimulated Raman scattering

- **Input WDM Spectrum** → 80 ASE-shaped channels through a commercial wave shaper filter (1000S, Fisinar)
- **Modulated channels** → generated by flexible CFP2-DCO coherent modules from Lumentum plugged in the Edgecore Cassini AS7716-24SC

AUTONOMOUS CHARACTERIZATION RESULTS

<table>
<thead>
<tr>
<th>Span</th>
<th>L_s [km]</th>
<th>C_0 [(W km)$^{-1}$]</th>
<th>D [ps/(nm km)]</th>
<th>α [0.1dB/km]</th>
<th>$l(z=0)$ [dB]</th>
<th>$l(z=L_s)$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>80.4</td>
<td>0.42</td>
<td>16.7</td>
<td>0.191</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>#2</td>
<td>80.4</td>
<td>0.54</td>
<td>3.8</td>
<td>0.194</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>#3</td>
<td>80.6</td>
<td>0.60</td>
<td>8.0</td>
<td>0.188</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>#4</td>
<td>79.9</td>
<td>0.73</td>
<td>4.4</td>
<td>0.196</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>#5</td>
<td>79.8</td>
<td>0.60</td>
<td>8.0</td>
<td>0.199</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>#6</td>
<td>75.8</td>
<td>0.73</td>
<td>4.4</td>
<td>0.210</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>#7</td>
<td>64.7</td>
<td>0.44</td>
<td>16.7</td>
<td>0.189</td>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>#8</td>
<td>78.6</td>
<td>0.54</td>
<td>3.8</td>
<td>0.187</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
EXPERIMENTAL PoC: RESULTS

• Using autonomous line characterization Gain and tilt of each amplifier are jointly optimized
• Results are tested using modulated channels generated by pluggable DCO tuned on 9 different wavelength in the C-band
CONCLUSION

• Coherent optical technologies enable Software-Defined Optical Networking
• Abstraction and virtualization of WDM optical transport is based on accurate QoT-E
• Lacking knowledge of exact models for physical layer: mainly, amplifiers and fiber span
• If dataset are available or can be obtained, ML models of NE or subsystem is extremely effective
• If dataset are difficult to get or scenario varies with time, autonomous technics are needed and proven effective
THANK YOU FOR YOUR ATTENTION

CONTACTS

CURRI@POLITO.IT